Conference Paper

Machine Learning and Grounded Theory Method: Convergence, Divergence, and Combination

Loading...
Thumbnail Image

Fulltext URI

Document type

Text/Conference Paper

Additional Information

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery

Abstract

Grounded Theory Method (GTM) and Machine Learning (ML) are often considered to be quite different. In this note, we explore unexpected convergences between these methods. We propose new research directions that can further clarify the relationships between these methods, and that can use those relationships to strengthen our ability to describe our phenomena and develop stronger hybrid theories.

Description

Muller, Michael; Guha, Shion; Baumer, Eric P.S.; Mimno, David; Shami, N. Sadat (2016): Machine Learning and Grounded Theory Method: Convergence, Divergence, and Combination. Proceedings of the 2016 ACM International Conference on Supporting Group Work. DOI: 10.1145/2957276.2957280. Association for Computing Machinery. pp. 3–8. Sanibel Island, Florida, USA

Keywords

supervised learning, coding families, machine learning, axial coding, unsupervised learning, grounded theory

Citation

URI

Collections

Endorsement

Review

Supplemented By

Referenced By


Number of citations to item: 62

  • Erina Seh-Young Moon, Devansh Saxena, Tegan Maharaj, Shion Guha (2024): Beyond Predictive Algorithms in Child Welfare, In: Graphics Interface, doi:10.1145/3670947.3670976
  • Michael Muller, Thomas Erickson (2018): In the Data Kitchen, In: Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3170427.3188407
  • Xiaofei Zhou, Kaixin Li, Abdul Moid Munawar, Zhen Bai (2021): Scaffolding Design to Bridge the Gaps between Machine Learning and Scientific Discovery for K-12 STEM Education, In: Interaction Design and Children, doi:10.1145/3459990.3465194
  • Naja Holten Møller, Gina Neff, Jakob Grue Simonsen, Jonas Christoffer Villumsen, Pernille Bjørn (2021): Can Workplace Tracking Ever Empower? Collective Sensemaking for the Responsible Use of Sensor Data at Work, In: Proceedings of the ACM on Human-Computer Interaction GROUP(5), doi:10.1145/3463931
  • Alexandra Schofield, Siqi Wu, Theo Bayard de Volo, Tatsuki Kuze, Alfredo Gomez, Sharifa Sultana (2025): "My Very Subjective Human Interpretation": Domain Expert Perspectives on Navigating the Text Analysis Loop for Topic Models, In: Proceedings of the ACM on Human-Computer Interaction 1(9), doi:10.1145/3701201
  • Shion Guha, Eric P.S. Baumer, Geri K. Gay (2018): Regrets, I've Had a Few, In: Proceedings of the 2018 ACM Conference on Supporting Groupwork, doi:10.1145/3148330.3148338
  • Anamaria Crisan, Madison Elliott (2018): How to Evaluate an Evaluation Study? Comparing and Contrasting Practices in Vis with Those of Other Disciplines : Position Paper, In: 2018 IEEE Evaluation and Beyond - Methodological Approaches for Visualization (BELIV), doi:10.1109/beliv.2018.8634420
  • Xiaofei Zhou, Jingwan Tang, Michael Daley, Saad Ahmad, Zhen Bai (2021): “Now, I Want to Teach It for Real!”: Introducing Machine Learning as a Scientific Discovery Tool for K-12 Teachers, In: Lecture Notes in Computer Science, doi:10.1007/978-3-030-78292-4_39
  • Luca Longo (2019): Empowering Qualitative Research Methods in Education with Artificial Intelligence, In: Advances in Intelligent Systems and Computing, doi:10.1007/978-3-030-31787-4_1
  • Rafael José de Alencar Almeida, Dárlinton Barbosa Feres Carvalho (2019): Interactive Analysis of the Discussion from a Virtual Community on Neuroscience, In: Communications in Computer and Information Science, doi:10.1007/978-3-030-36636-0_5
  • Simon David Hirsbrunner (2024): Offenheit, Zugänglichkeit und Teilhabe an digitaler Medienforschung: das Beispiel teil-automatisierte Inhaltsanalyse in sozialen Medien, In: Handbuch Digitale Medien und Methoden, doi:10.1007/978-3-658-36629-2_7-1
  • Canan Urhan (2024): Enhancing Semantic Understanding by Bridging Topic Modeling and Thematic Analysis: An Empirical Study on Self-Help Twitter Corpus and In-Depth Interviews, In: Digital Humanities Looking at the World, doi:10.1007/978-3-031-48941-9_5
  • Jie Gao, Yuchen Guo, Gionnieve Lim, Tianqin Zhang, Zheng Zhang, Toby Jia-Jun Li, Simon Tangi Perrault (2024): CollabCoder: A Lower-barrier, Rigorous Workflow for Inductive Collaborative Qualitative Analysis with Large Language Models, In: Proceedings of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613904.3642002
  • Arjunil Pathak, Navid Madani, Kenneth Joseph (2021): A Method to Analyze Multiple Social Identities in Twitter Bios, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(5), doi:10.1145/3479502
  • Alex H. Poole (2023): Data Flourishing: Developing <scp>Human‐Centered</scp> Data Science through Communities of Ethical Practice, In: Proceedings of the Association for Information Science and Technology 1(60), doi:10.1002/pra2.793
  • Shengchu Zhao, Wei Li, Tanveer Zia, Albert Y. Zomaya (2017): A Dimension Reduction Model and Classifier for Anomaly-Based Intrusion Detection in Internet of Things, In: 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), doi:10.1109/dasc-picom-datacom-cyberscitec.2017.141
  • Filiz Garip, Michael W. Macy (2023): Machine Learning in Sociology, In: The Oxford Handbook of the Sociology of Machine Learning, doi:10.1093/oxfordhb/9780197653609.013.11
  • Devansh Saxena, Seh Young Moon, Dahlia Shehata, Shion Guha (2022): Unpacking Invisible Work Practices, Constraints, and Latent Power Relationships in Child Welfare through Casenote Analysis, In: CHI Conference on Human Factors in Computing Systems, doi:10.1145/3491102.3517742
  • Robert P. Gauthier, Catherine Pelletier, Laurie-Ann Carrier, Maude Dionne, Ève Dubé, Samantha Meyer, James R. Wallace (2022): Agency and Amplification, In: Proceedings of the ACM on Human-Computer Interaction GROUP(7), doi:10.1145/3567552
  • Nan-Chen Chen, Margaret Drouhard, Rafal Kocielnik, Jina Suh, Cecilia R. Aragon (2018): Using Machine Learning to Support Qualitative Coding in Social Science, In: ACM Transactions on Interactive Intelligent Systems 2(8), doi:10.1145/3185515
  • Eric P. S. Baumer, Alex S. Taylor, Jed R. Brubaker, Micki McGee (2024): Algorithmic Subjectivities, In: ACM Transactions on Computer-Human Interaction 3(31), doi:10.1145/3660344
  • Samir Passi, Solon Barocas (2019): Problem Formulation and Fairness, In: Proceedings of the Conference on Fairness, Accountability, and Transparency, doi:10.1145/3287560.3287567
  • Gaurav Nanda, Aparajita Jaiswal, Hugo Castellanos, Yuzhe Zhou, Alex Choi, Alejandra J. Magana (2023): Evaluating the Coverage and Depth of Latent Dirichlet Allocation Topic Model in Comparison with Human Coding of Qualitative Data: The Case of Education Research, In: Machine Learning and Knowledge Extraction 2(5), doi:10.3390/make5020029
  • Turki Alelyani, Arup Kumar Ghosh, Larry Moralez, Shion Guha, Pamela Wisniewski (2019): Examining Parent Versus Child Reviews of Parental Control Apps on Google Play, In: Lecture Notes in Computer Science, doi:10.1007/978-3-030-21905-5_1
  • Eunhye (Olivia) Park, Bongsug Chae, Junehee Kwon (2018): Toward understanding the topical structure of hospitality literature, In: International Journal of Contemporary Hospitality Management 11(30), doi:10.1108/ijchm-11-2017-0714
  • Robert P Gauthier, Mary Jean Costello, James R Wallace (2022): “I Will Not Drink With You Today”: A Topic-Guided Thematic Analysis of Addiction Recovery on Reddit, In: CHI Conference on Human Factors in Computing Systems, doi:10.1145/3491102.3502076
  • Razieh Tavakoli, Ali Sharifara, Mohammad Najafi (2020): Prediction of Pipe Failures in Wastewater Networks Using Random Forest Classification, In: Pipelines 2020, doi:10.1061/9780784483206.011
  • Sindhu Kiranmai Ernala, Kathan H. Kashiparekh, Amir Bolous, Asra Ali, John M. Kane, Michael L. Birnbaum, Munmun De Choudhury (2021): A Social Media Study on Mental Health Status Transitions Surrounding Psychiatric Hospitalizations, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(5), doi:10.1145/3449229
  • Leila Homaeian, Vanessa Duong, Keiko Katsuragawa, James R. Wallace (2025): Community Support for Aging in Place: A Computational Thematic Analysis of Discussions about Informal Care on Reddit, In: Proceedings of the ACM on Human-Computer Interaction 1(9), doi:10.1145/3701187
  • Marina Kogan, Aaron Halfaker, Shion Guha, Cecilia Aragon, Michael Muller, Stuart Geiger (2020): Mapping Out Human-Centered Data Science, In: Companion of the 2020 ACM International Conference on Supporting Group Work, doi:10.1145/3323994.3369898
  • Anna Triandafyllidou, Marta Bivand Erdal, Sabrina Marchetti, Parvati Raghuram, Zeynep Sahin Mencutek, Justyna Salamońska, Peter Scholten, Daniela Vintila (2023): Rethinking Migration Studies for 2050, In: Journal of Immigrant &amp; Refugee Studies 1(22), doi:10.1080/15562948.2023.2289116
  • Morva Saaty, Natalie Andrus, Norhan Abdelgawad, Jennifer Chandran, Brett Noneman, Justice Jackson, Kun Alading, Taha Hassan, D. Scott Mccrickard, Shalini Misra, Kris Wernstedt (2024): "Is Long-distance Hiking an Emotional Roller Coaster?" Evaluating Emotions and Weather Effects on the Appalachian Trail, In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613905.3651024
  • Summer Da Hyang Jung, Chandrayee Basu, Donghyeon Park, Julie Fukunaga, Maycon Cesar Santos, Sohyeong Kim (2022): Two-handed Design: Development of Food Personality Framework Using Mixed Method Needfinding, In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, doi:10.1145/3491101.3503554
  • Fatjon Mehmeti, Donald Elmazi, Elis Kulla (2024): Expressing Liminality in Data within the Context of Deep Learning, In: 2024 International Conference on Computing, Networking, Telecommunications &amp;amp; Engineering Sciences Applications (CoNTESA), doi:10.1109/contesa64738.2024.10891280
  • Eric P.S. Baumer, Xiaotong Xu, Christine Chu, Shion Guha, Geri K. Gay (2017): When Subjects Interpret the Data, In: Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, doi:10.1145/2998181.2998182
  • You-Wei Cheah, Drew Paine, Devarshi Ghoshal, Lavanya Ramakrishnan (2018): Bringing Data Science to Qualitative Analysis, In: 2018 IEEE 14th International Conference on e-Science (e-Science), doi:10.1109/escience.2018.00076
  • Eunhye (Olivia) Park, Bongsug (Kevin) Chae, Junehee Kwon (2018): The structural topic model for online review analysis, In: Journal of Hospitality and Tourism Technology 1(11), doi:10.1108/jhtt-08-2017-0075
  • Ziang Xiao, Xingdi Yuan, Q. Vera Liao, Rania Abdelghani, Pierre-Yves Oudeyer (2023): Supporting Qualitative Analysis with Large Language Models: Combining Codebook with GPT-3 for Deductive Coding, In: 28th International Conference on Intelligent User Interfaces, doi:10.1145/3581754.3584136
  • Katie Shilton, Emanuel Moss, Sarah A. Gilbert, Matthew J. Bietz, Casey Fiesler, Jacob Metcalf, Jessica Vitak, Michael Zimmer (2021): Excavating awareness and power in data science: A manifesto for trustworthy pervasive data research, In: Big Data &amp; Society 2(8), doi:10.1177/20539517211040759
  • Lorenzo Barberis Canonico, Nathan J. McNeese, Chris Duncan (2018): Machine Learning as Grounded Theory: Human-Centered Interfaces for Social Network Research through Artificial Intelligence, In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting 1(62), doi:10.1177/1541931218621287
  • Jessica L. Feuston, Jed R. Brubaker (2021): Putting Tools in Their Place: The Role of Time and Perspective in Human-AI Collaboration for Qualitative Analysis, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(5), doi:10.1145/3479856
  • Jialun Aaron Jiang, Kandrea Wade, Casey Fiesler, Jed R. Brubaker (2021): Supporting Serendipity, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(5), doi:10.1145/3449168
  • Modassir Iqbal, Katie Shilton, Mahmoud F. Sayed, Douglas Oard, Jonah Lynn Rivera, William Cox (2021): Search with Discretion, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(5), doi:10.1145/3449207
  • Scott Allen Cambo, Darren Gergle (2022): Model Positionality and Computational Reflexivity: Promoting Reflexivity in Data Science, In: CHI Conference on Human Factors in Computing Systems, doi:10.1145/3491102.3501998
  • Devansh Saxena, Erina Seh-Young Moon, Aryan Chaurasia, Yixin Guan, Shion Guha (2023): Rethinking "Risk" in Algorithmic Systems Through A Computational Narrative Analysis of Casenotes in Child-Welfare, In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3544548.3581308
  • Michela Vignoli, Jan Rörden, Dana Wasserbacher, Simone Kimpeler (2022): An Exploration of the Potential of Machine Learning Tools for Media Analysis to Support Sense-Making Processes in Foresight, In: Frontiers in Communication, doi:10.3389/fcomm.2022.750614
  • Aybike Özyüksel Çiftçioğlu, M.Z. Naser (2022): Hiding in plain sight: What can interpretable unsupervised machine learning and clustering analysis tell us about the fire behavior of reinforced concrete columns?, In: Structures, doi:10.1016/j.istruc.2022.04.076
  • Briane Paul V. Samson, Yasuyuki Sumi (2019): Exploring Factors that Influence Connected Drivers to (Not) Use or Follow Recommended Optimal Routes, In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3290605.3300601
  • Eric P. S. Baumer, David Mimno, Shion Guha, Emily Quan, Geri K. Gay (2017): Comparing grounded theory and topic modeling: Extreme divergence or unlikely convergence?, In: Journal of the Association for Information Science and Technology 6(68), doi:10.1002/asi.23786
  • Jan Goldenstein, Philipp Poschmann (2019): Analyzing Meaning in Big Data: Performing a Map Analysis Using Grammatical Parsing and Topic Modeling, In: Sociological Methodology 1(49), doi:10.1177/0081175019852762
  • Nathaniel Poor (2020): Open-Source’s Inspirations for Computational Social Science: Lessons from a Failed Analysis, In: Media and Communication 3(8), doi:10.17645/mac.v8i3.3163
  • Michelle S. Lam, Janice Teoh, James A. Landay, Jeffrey Heer, Michael S. Bernstein (2024): Concept Induction: Analyzing Unstructured Text with High-Level Concepts Using LLooM, In: Proceedings of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613904.3642830
  • Brianna Dym, Casey Fiesler (2020): When Social Norms Fail, In: Companion of the 2020 ACM International Conference on Supporting Group Work, doi:10.1145/3323994.3369881
  • Nigini Oliveira, Michael Muller, Nazareno Andrade, Katharina Reinecke (2018): The Exchange in StackExchange, In: Proceedings of the ACM on Human-Computer Interaction CSCW(2), doi:10.1145/3274399
  • Tian Xu, Junnan Yu, Dylan Thomas Doyle, Stephen Voida (2023): Technology-Mediated Strategies for Coping with Mental Health Challenges: Insights from People with Bipolar Disorder, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(7), doi:10.1145/3610031
  • Devansh Saxena, Karla Badillo-Urquiola, Pamela J. Wisniewski, Shion Guha (2020): A Human-Centered Review of Algorithms used within the U.S. Child Welfare System, In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3313831.3376229
  • Mario Molina, Filiz Garip (2019): Machine Learning for Sociology, In: Annual Review of Sociology 1(45), doi:10.1146/annurev-soc-073117-041106
  • Matt-Heun Hong, Lauren A. Marsh, Jessica L. Feuston, Janet Ruppert, Jed R. Brubaker, Danielle Albers Szafir (2022): Scholastic: Graphical Human-AI Collaboration for Inductive and Interpretive Text Analysis, In: Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology, doi:10.1145/3526113.3545681
  • Jan Goldenstein, Philipp Poschmann (2019): A Quest for Transparent and Reproducible Text-Mining Methodologies in Computational Social Science, In: Sociological Methodology 1(49), doi:10.1177/0081175019867855
  • Eric P. S. Baumer, Drew Siedel, Lena McDonnell, Jiayun Zhong, Patricia Sittikul, Micki McGee (2020): Topicalizer: reframing core concepts in machine learning visualization by co-designing for interpretivist scholarship, In: Human–Computer Interaction 5-6(35), doi:10.1080/07370024.2020.1734460
  • Devansh Saxena, Patrick Skeba, Shion Guha, Eric P. S. Baumer (2020): Methods for Generating Typologies of Non/use, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(4), doi:10.1145/3392832
  • Keith Brawner, Michael W. Boyce (2017): Establishing Ground Truth on Pyschophysiological Models for Training Machine Learning Algorithms: Options for Ground Truth Proxies, In: Lecture Notes in Computer Science, doi:10.1007/978-3-319-58628-1_35
Please note: Providing information about citations is only possible thanks to to the open metadata APIs provided by crossref.org and opencitations.net. These lists may be incomplete due to unavailable citation data.source: opencitations.net, crossref.org