Journal Article

Contested Collective Intelligence: Rationale, Technologies, and a Human-Machine Annotation Study

Loading...
Thumbnail Image

Fulltext URI

Document type

Text/Journal Article

Additional Information

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

We propose the concept of Contested Collective Intelligence (CCI) as a distinctive subset of the broader Collective Intelligence design space. CCI is relevant to the many organizational contexts in which it is important to work with contested knowledge, for instance, due to different intellectual traditions, competing organizational objectives, information overload or ambiguous environmental signals. The CCI challenge is to design sociotechnical infrastructures to augment such organizational capability. Since documents are often the starting points for contested discourse, and discourse markers provide a powerful cue to the presence of claims, contrasting ideas and argumentation, discourse and rhetoric provide an annotation focus in our approach to CCI. Research in sensemaking, computer-supported discourse and rhetorical text analysis motivate a conceptual framework for the combined human and machine annotation of texts with this specific focus. This conception is explored through two tools: a social-semantic web application for human annotation and knowledge mapping (Cohere), plus the discourse analysis component in a textual analysis software tool (Xerox Incremental Parser: XIP). As a step towards an integrated platform, we report a case study in which a document corpus underwent independent human and machine analysis, providing quantitative and qualitative insight into their respective contributions. A promising finding is that significant contributions were signalled by authors via explicit rhetorical moves, which both human analysts and XIP could readily identify. Since working with contested knowledge is at the heart of CCI, the evidence that automatic detection of contrasting ideas in texts is possible through rhetorical discourse analysis is progress towards the effective use of automatic discourse analysis in the CCI framework.

Description

De Liddo, Anna; Sándor, Ágnes; Buckingham Shum, Simon (2012): Contested Collective Intelligence: Rationale, Technologies, and a Human-Machine Annotation Study. Computer Supported Cooperative Work (CSCW): Vol. 21. DOI: 10.1007/s10606-011-9155-x. Springer. PISSN: 1573-7551. pp. 417-448

Keywords

collective intelligence, discourse, human annotation, knowledge mapping, learning, machine annotation, network visualization, sensemaking, social annotation, social software

Citation

URI

Endorsement

Review

Supplemented By

Referenced By


Number of citations to item: 38

  • Kollipara Sai Varun, I. Puneeth, T. Prem Jacob (2019): Virtual Mouse Implementation using Open CV, In: 2019 3rd International Conference on Trends in Electronics and Informatics (ICOEI), doi:10.1109/icoei.2019.8862764
  • Federico Cabitza, Carla Simone, Marco P. Locatelli (2012): Supporting artifact-mediated discourses through a recursive annotation tool, In: Proceedings of the 17th ACM international conference on Supporting group work, doi:10.1145/2389176.2389215
  • Floris Bex, John Lawrence, Mark Snaith, Chris Reed (2013): Implementing the argument web, In: Communications of the ACM 10(56), doi:10.1145/2500891
  • Tiziano Piccardi, Gregorio Convertino, Massimo Zancanaro, Ji Wang, Cedric Archambeau (2014): Towards crowd-based customer service, In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, doi:10.1145/2556288.2557202
  • Jung-Yong Lee, Chang-Hyun Jin (2019): How Collective Intelligence Fosters Incremental Innovation, In: Journal of Open Innovation: Technology, Market, and Complexity 3(5), doi:10.3390/joitmc5030053
  • Rebecca Ferguson, Simon Buckingham Shum (2012): Social learning analytics, In: Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, doi:10.1145/2330601.2330616
  • Pierre Pluye, Vera Granikov (2020): Evaluating online health information sources using a mixed methods approach. Part 3, In: Education for Information 1(36), doi:10.3233/efi-190335
  • Murtaza Mustufa Sahiwala, Shrishti Ravindra Singh, Deepti Pawar, Disha Dinesh Jakasaniya, Krishna Manoj Patel (2023): Virtual Mouse using Coordinate Mapping, In: 2023 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS), doi:10.1109/icscds56580.2023.10104598
  • Rafał Olszowski, Marcin Chmielowski (2020): Collective Intelligence in Polish-Ukrainian Internet Projects. Debate Models and Research Methods, In: Future Internet 6(12), doi:10.3390/fi12060106
  • Anna De Liddo, Nieves Pedreira Souto, Brian Plüss (2021): Let's replay the political debate: Hypervideo technology for visual sensemaking of televised election debates, In: International Journal of Human-Computer Studies, doi:10.1016/j.ijhcs.2020.102537
  • Lars Nyre (2021): Designing collective intelligence to improve the democratic public, In: Norsk medietidsskrift 2(28), doi:10.18261/issn.0805-9535-2021-02-06
  • S. Buckingham Shum, K. Aberer, A. Schmidt, S. Bishop, P. Lukowicz, S. Anderson, Y. Charalabidis, J. Domingue, S. de Freitas, I. Dunwell, B. Edmonds, F. Grey, M. Haklay, M. Jelasity, A. Karpištšenko, J. Kohlhammer, J. Lewis, J. Pitt, R. Sumner, D. Helbing (2012): Towards a global participatory platform, In: The European Physical Journal Special Topics 1(214), doi:10.1140/epjst/e2012-01690-3
  • Majid Zamiri, Luis M. Camarinha-Matos (2019): Mass Collaboration and Learning: Opportunities, Challenges, and Influential Factors, In: Applied Sciences 13(9), doi:10.3390/app9132620
  • Lara Schibelsky Godoy Piccolo, Harith Alani, Anna De Liddo, Cecília Baranauskas (2014): Motivating online engagement and debates on energy consumption, In: Proceedings of the 2014 ACM conference on Web science, doi:10.1145/2615569.2615695
  • Pınar Ayyıldız (2024): Situating a Prism to See ‘All Colors’: Evaluations of the E-school System in Türkiye from the Perspective of Educational Equity, In: Participatory Educational Research 3(11), doi:10.17275/per.24.39.11.3
  • Nikos Karacapilidis, Dimitris Tsakalidis, George Domalis (2023): An AI-Enhanced Solution for Large-Scale Deliberation Mapping and Explainable Reasoning, In: Lecture Notes in Business Information Processing, doi:10.1007/978-3-031-30694-5_23
  • Halimat I. Alabi (2016): A Language and a Space, In: Advances in Educational Marketing, Administration, and Leadership, doi:10.4018/978-1-4666-9983-0.ch001
  • Douglas Schuler, Anna De Liddo, Justin Smith, Fiorella De Cindio (2017): Collective intelligence for the common good: cultivating the seeds for an intentional collaborative enterprise, In: AI & SOCIETY 1(33), doi:10.1007/s00146-017-0776-6
  • Anna De Liddo (2014): Enhancing Discussion Forums with Combined Argument and Social Network Analytics, In: Advanced Information and Knowledge Processing, doi:10.1007/978-1-4471-6470-8_15
  • Gregorio Convertino, Massimo Zancanaro, Tiziano Piccardi, Felipe Ortega (2017): Toward a mixed-initiative QA system: from studying predictors in Stack Exchange to building a mixed-initiative tool, In: International Journal of Human-Computer Studies, doi:10.1016/j.ijhcs.2016.10.008
  • Luca Ronzio, Andrea Campagner, Federico Cabitza, Gian Franco Gensini (2021): Unity Is Intelligence: A Collective Intelligence Experiment on ECG Reading to Improve Diagnostic Performance in Cardiology, In: Journal of Intelligence 2(9), doi:10.3390/jintelligence9020017
  • Hantao Zhao, Tyler Thrash, Fabian Schläfli, Mubbasir Kapadia, Leonel Aguilar, Dirk Helbing, Christoph Hölscher (2022): Collective Intelligence during Emergency Egress: The Mechanisms Underlying Altruistic Information Exchange, In: International Journal of Human–Computer Interaction 14(39), doi:10.1080/10447318.2022.2087274
  • Anna De Liddo (2022): Using Technology to Unite Us: Can Disagreement be a Catalyst for Consensus Building?, In: ACM SIGCAS Computers and Society 2(51), doi:10.1145/3585066.3585071
  • Lara S. G. Piccolo, Anna De Liddo, Gregoire Burel, Miriam Fernandez, Harith Alani (2017): Collective intelligence for promoting changes in behaviour: a case study on energy conservation, In: AI & SOCIETY 1(33), doi:10.1007/s00146-017-0710-y
  • Anna De Liddo, Brian Plüss, Paul Wilson (2017): A Novel Method to Gauge Audience Engagement with Televised Election Debates through Instant, Nuanced Feedback Elicitation, In: Proceedings of the 8th International Conference on Communities and Technologies, doi:10.1145/3083671.3083673
  • Delfina Malandrino, Ilaria Manno, Giuseppina Palmieri, Andrea Petta, Donato Pirozzi, Vittorio Scarano, Luigi Serra, Carmine Spagnuolo, Luca Vicidomini, Gennaro Cordasco (2016): An Architecture for Social Sharing and Collaboration around Open Data Visualisations, In: Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Companion, doi:10.1145/2818052.2869099
  • Simon Buckingham Shum, Ágnes Sándor, Rosalie Goldsmith, Xiaolong Wang, Randall Bass, Mindy McWilliams (2016): Reflecting on reflective writing analytics, In: Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK '16, doi:10.1145/2883851.2883955
  • Brian Plüss, Anna De Liddo (2015): Engaging Citizens with Televised Election Debates through Online Interactive Replays, In: Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, doi:10.1145/2745197.2755521
  • Anna De Liddo, Rosa Strube (2021): Understanding Failures and Potentials of Argumentation Tools for Public Deliberation, In: C&T '21: Proceedings of the 10th International Conference on Communities & Technologies - Wicked Problems in the Age of Tech, doi:10.1145/3461564.3461584
  • Alice Toniolo, Federico Cerutti, Timothy J. Norman, Nir Oren, John A. Allen, Mani Srivastava, Paul Sullivan (2023): Human-machine collaboration in intelligence analysis: An expert evaluation, In: Intelligent Systems with Applications, doi:10.1016/j.iswa.2022.200151
  • Hélène de Ribaupierre, Gilles Falquet (2017): Extracting discourse elements and annotating scientific documents using the SciAnnotDoc model: a use case in gender documents, In: International Journal on Digital Libraries 2-3(19), doi:10.1007/s00799-017-0227-5
  • Lucas Anastasiou, Aldo De Moor, Barbara Brayshay, Anna De Liddo (2023): A tale of struggles: an evaluation framework for transitioning from individually usable to community-useful online deliberation tools, In: The 11th International Conference on Communities and Technologies (C&T), doi:10.1145/3593743.3593771
  • J. Johnson, S. Buckingham Shum, A. Willis, S. Bishop, T. Zamenopoulos, S. Swithenby, R. MacKay, Y. Merali, A. Lorincz, C. Costea, P. Bourgine, J. Louçã, A. Kapenieks, P. Kelley, S. Caird, J. Bromley, R. Deakin Crick, C. Goldspink, P. Collet, A. Carbone, D. Helbing (2012): The FuturICT education accelerator, In: The European Physical Journal Special Topics 1(214), doi:10.1140/epjst/e2012-01693-0
  • Alberto Cottica, Guy Melançon, Benjamin Renoust (2016): Testing for the signature of policy in online communities, In: Studies in Computational Intelligence, doi:10.1007/978-3-319-50901-3_4
  • Aelita Skarzauskiene (2018): Monitoring Collective Intelligence, In: Companion of the 2018 ACM Conference on Computer Supported Cooperative Work and Social Computing, doi:10.1145/3272973.3274074
  • Alberto Cottica, Guy Melançon, Benjamin Renoust (2017): Online community management as social network design: testing for the signature of management activities in online communities, In: Applied Network Science 1(2), doi:10.1007/s41109-017-0049-9
  • Simon Knight, Simon Buckingham Shum, Philippa Ryan, Ágnes Sándor, Xiaolong Wang (2016): Designing Academic Writing Analytics for Civil Law Student Self-Assessment, In: International Journal of Artificial Intelligence in Education 1(28), doi:10.1007/s40593-016-0121-0
  • P. C. Vasquez (2012): Blackboard Data Spaces for the Elicitation of Community-based Lightweight Ontologies, In: 2012 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, doi:10.1109/asonam.2012.196
Please note: Providing information about citations is only possible thanks to to the open metadata APIs provided by crossref.org and opencitations.net. These lists may be incomplete due to unavailable citation data.source: opencitations.net, crossref.org