Journal Article

Unearthing the Infrastructure: Humans and Sensors in Field-Based Scientific Research

Loading...
Thumbnail Image

Fulltext URI

Document type

Text/Journal Article

Additional Information

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Springer

Abstract

Distributed sensing systems for studying scientific phenomena are critical applications of information technologies. By embedding computational intelligence in the environment of study, sensing systems allow researchers to study phenomena at spatial and temporal scales that were previously impossible to achieve. We present an ethnographic study of field research practices among researchers in the Center for Embedded Networked Sensing (CENS), a National Science Foundation Science & Technology Center devoted to developing wireless sensing systems for scientific and social applications. Using the concepts of boundary objects and trading zones, we trace the processes of collaborative research around sensor technology development and adoption within CENS. Over the 10-year lifespan of CENS, sensor technologies, sensor data, field research methods, and statistical expertise each emerged as boundary objects that were understood differently by the science and technology partners. We illustrate how sensing technologies were incompatible with field-based environmental research until researchers “unearthed” their infrastructures, explicitly reintroducing human skill and expertise into the data collection process and developing new collaborative languages that emphasized building dynamic sensing systems that addressed human needs. In collaborating around a dynamic sensing model, the sensing systems became embedded not in the environment of study, but in the practices of the scientists.

Description

Mayernik, Matthew S.; Wallis, Jillian C.; Borgman, Christine L. (2013): Unearthing the Infrastructure: Humans and Sensors in Field-Based Scientific Research. Computer Supported Cooperative Work (CSCW): Vol. 22, No. 1. DOI: 10.1007/s10606-012-9178-y. Springer. PISSN: 1573-7551. pp. 65-101

Keywords

boundary objects, collaboration, ecology, environmental science, infrastructure, scientific data, seismology, sensors, technology driven research, trading zones

Citation

URI

Endorsement

Review

Supplemented By

Referenced By


Number of citations to item: 30

  • Karen S. Baker, Helena Karasti (2018): Data care and its politics, In: Proceedings of the 15th Participatory Design Conference: Full Papers - Volume 1, doi:10.1145/3210586.3210587
  • Øystein Godøy, Bard Saadatnejad (2017): ACCESS climate data management, In: Ambio S3(46), doi:10.1007/s13280-017-0963-1
  • Betsy Van der Veer Martens, Bradley G. Illston, Christopher A. Fiebrich (2017): The Oklahoma Mesonet: A Pilot Study of Environmental Sensor Data Citations, In: Data Science Journal, doi:10.5334/dsj-2017-047
  • Elena Parmiggiani, Eric Monteiro, Vidar Hepsø (2015): The Digital Coral: Infrastructuring Environmental Monitoring, In: Computer Supported Cooperative Work (CSCW) 5(24), doi:10.1007/s10606-015-9233-6
  • Christine L. Borgman, Morgan F. Wofford, Milena S. Golshan, Peter T. Darch (2021): Collaborative qualitative research at scale: Reflections on 20 years of acquiring global data and making data global, In: Journal of the Association for Information Science and Technology 6(72), doi:10.1002/asi.24439
  • Wolff-Michael Roth, Alfredo Jornet (2017): From Object-Oriented to Fluid Ontology: a Case Study of the Materiality of Design Work in Agile Software Development, In: Computer Supported Cooperative Work (CSCW) 1(27), doi:10.1007/s10606-017-9297-6
  • Chung-Yi Hou, Matthew S. Mayernik, Steven Worley (2017): Building Community Informed and Driven Data Services at the National Center for Atmospheric Research, In: Practice and Experience in Advanced Research Computing 2017: Sustainability, Success and Impact, doi:10.1145/3093338.3093343
  • Jillian C. Wallis, Elizabeth Rolando, Christine L. Borgman (2013): If We Share Data, Will Anyone Use Them? Data Sharing and Reuse in the Long Tail of Science and Technology, In: PLoS ONE 7(8), doi:10.1371/journal.pone.0067332
  • Wolfgang Kaltenbrunner (2014): Infrastructural Inversion as a Generative Resource in Digital Scholarship, In: Science as Culture 1(24), doi:10.1080/09505431.2014.917621
  • Emily Maemura (2023): Sorting URLs out: seeing the web through infrastructural inversion of archival crawling, In: Internet Histories 4(7), doi:10.1080/24701475.2023.2258697
  • Wolfgang Kaltenbrunner, Sarah de Rijcke (2019): Filling in the gaps: The interpretation of <i>curricula vitae</i> in peer review, In: Social Studies of Science 6(49), doi:10.1177/0306312719864164
  • Matthew S Mayernik (2019): Metadata accounts: Achieving data and evidence in scientific research, In: Social Studies of Science 5(49), doi:10.1177/0306312719863494
  • Peter Thomas Darch (2022): The core of the matter: How do scientists judge trustworthiness of physical samples?, In: Frontiers in Research Metrics and Analytics, doi:10.3389/frma.2022.1034595
  • Alyson L. Young, Wayne G. Lutters (2017): Infrastructuring for Cross-Disciplinary Synthetic Science: Meta-Study Research in Land System Science, In: Computer Supported Cooperative Work (CSCW) 1-2(26), doi:10.1007/s10606-017-9267-z
  • Jose María Álvarez-Rodríguez, Giner Alor-Hernández, Jezreel Mejía-Miranda (2018): Survey of Scientific Programming Techniques for the Management of Data-Intensive Engineering Environments, In: Scientific Programming, doi:10.1155/2018/8467413
  • Christine L. Borgman (2020): Bibliographie, In: Qu’est-ce que le travail scientifique des données ?, doi:10.4000/books.oep.14792
  • Marius Mikalsen (2014): A Case Study of an Information Infrastructure Supporting Knowledge Work in Oil and Gas Exploration, In: COOP 2014 - Proceedings of the 11th International Conference on the Design of Cooperative Systems, 27-30 May 2014, Nice (France), doi:10.1007/978-3-319-06498-7_8
  • Gobinda Chowdhury, Joumana Boustany, Serap Kurbanoğlu, Yurdagül Ünal, Geoff Walton (2017): Preparedness for Research Data Sharing: A Study of University Researchers in Three European Countries, In: Lecture Notes in Computer Science, doi:10.1007/978-3-319-70232-2_9
  • Jesper Simonsen, Helena Karasti, Morten Hertzum (2019): Infrastructuring and Participatory Design: Exploring Infrastructural Inversion as Analytic, Empirical and Generative, In: Computer Supported Cooperative Work (CSCW) 1-2(29), doi:10.1007/s10606-019-09365-w
  • Matthew S. Mayernik (2015): Research data and metadata curation as institutional issues, In: Journal of the Association for Information Science and Technology 4(67), doi:10.1002/asi.23425
  • Joel Cutcher-Gershenfeld, Karen S Baker, Nicholas Berente, Dorothy R Carter, Leslie A DeChurch, Courtney C Flint, Gabriel Gershenfeld, Michael Haberman, John Leslie King, Christine Kirkpatrick, Eric Knight, Barbara Lawrence, Spenser Lewis, W Christopher Lenhardt, Pablo Lopez, Matthew S Mayernik, Charles McElroy, Barbara Mittleman, Victor Nichol, Mark Nolan, Namchul Shin, Cheryl A Thompson, Susan Winter, Ilya Zaslavsky (2016): Build It, But Will They Come? A Geoscience Cyberinfrastructure Baseline Analysis, In: Data Science Journal 0(15), doi:10.5334/dsj-2016-008
  • Srishti Gupta, Julia Jablonski, Chun-Hua Tsai, John M. Carroll (2022): Instagram of Rivers: Facilitating Distributed Collaboration in Hyperlocal Citizen Science, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(6), doi:10.1145/3512944
  • Karen S. Baker, Matthew S. Mayernik (2020): Disentangling knowledge production and data production, In: Ecosphere 7(11), doi:10.1002/ecs2.3191
  • Christopher Wood, Stefan Poslad, Antonios Kaniadakis, Jennifer Gabrys (2017): What Lies Above, In: Proceedings of the 2017 Conference on Designing Interactive Systems, doi:10.1145/3064663.3064757
  • Marius Mikalsen, Eric Monteiro (2018): Data Handling in Knowledge Infrastructures, In: Proceedings of the ACM on Human-Computer Interaction CSCW(2), doi:10.1145/3274392
  • Christine L. Borgman, Andrea Scharnhorst, Milena S. Golshan (2019): Digital data archives as knowledge infrastructures: Mediating data sharing and reuse, In: Journal of the Association for Information Science and Technology 8(70), doi:10.1002/asi.24172
  • Christine L. Borgman, Peter T. Darch, Ashley E. Sands, Jillian C. Wallis, Sharon Traweek (2014): The ups and downs of knowledge infrastructures in science: Implications for data management, In: IEEE/ACM Joint Conference on Digital Libraries, doi:10.1109/jcdl.2014.6970177
  • Christine L. Borgman, Peter T. Darch, Ashley E. Sands, Irene V. Pasquetto, Milena S. Golshan, Jillian C. Wallis, Sharon Traweek (2015): Knowledge infrastructures in science: data, diversity, and digital libraries, In: International Journal on Digital Libraries 3-4(16), doi:10.1007/s00799-015-0157-z
  • Helena Karasti, Jeanette Blomberg (2017): Studying Infrastructuring Ethnographically, In: Computer Supported Cooperative Work (CSCW) 2(27), doi:10.1007/s10606-017-9296-7
  • Götz Hoeppe (2018): Mediating Environments and Objects as Knowledge Infrastructure, In: Computer Supported Cooperative Work (CSCW) 1-2(28), doi:10.1007/s10606-018-9342-0
Please note: Providing information about citations is only possible thanks to to the open metadata APIs provided by crossref.org and opencitations.net. These lists may be incomplete due to unavailable citation data.source: opencitations.net, crossref.org