Conference Paper

Mapping Out Human-Centered Data Science: Methods, Approaches, and Best Practices

Loading...
Thumbnail Image

Fulltext URI

Document type

Text/Conference Paper

Additional Information

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Association for Computing Machinery

Abstract

Social media platforms and social network sites generate a multitude of digital trace behavioral data, the scale of which often necessitates the use of computational data science methods. On the other hand, the socio-behavioral and often relational nature of the social media data requires the attention to context of user activity traditionally associated with qualitative analysis. Human-Centered Data Science (HCDS) attempts to bridge this gap by both harnessing the power of computational techniques and accounting for highly situated and nuanced nature of the social media activity. In this workshop we plan to consider the methods, pitfalls, and approaches of how to do HCDS effectively. Moreover, from collating and organizing these approaches we hope to progress to considering best (or at least common) practices in HCDS.

Description

Kogan, Marina; Halfaker, Aaron; Guha, Shion; Aragon, Cecilia; Muller, Michael; Geiger, Stuart (2020): Mapping Out Human-Centered Data Science: Methods, Approaches, and Best Practices. Companion Proceedings of the 2020 ACM International Conference on Supporting Group Work. DOI: 10.1145/3323994.3369898. Association for Computing Machinery. pp. 151–156. Sanibel Island, Florida, USA

Keywords

qualitative methods, quantitative methods, social media data, human-centered data science

Citation

URI

Collections

Endorsement

Review

Supplemented By

Referenced By


Number of citations to item: 31

  • Matthias Braun, Darian Meacham (2024): A Plea for (In)Human-centred AI, In: Philosophy & Technology 3(37), doi:10.1007/s13347-024-00785-1
  • Michael Muller, Lydia B Chilton, Anna Kantosalo, Charles Patrick Martin, Greg Walsh (2022): GenAICHI: Generative AI and HCI, In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, doi:10.1145/3491101.3503719
  • Jiao Sun, Q. Vera Liao, Michael Muller, Mayank Agarwal, Stephanie Houde, Kartik Talamadupula, Justin D. Weisz (2022): Investigating Explainability of Generative AI for Code through Scenario-based Design, In: 27th International Conference on Intelligent User Interfaces, doi:10.1145/3490099.3511119
  • Cindy Kaiying Lin, Steven J. Jackson (2023): From Bias to Repair: Error as a Site of Collaboration and Negotiation in Applied Data Science Work, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(7), doi:10.1145/3579607
  • Tianling Yang, Milagros Miceli (2024): "Guilds" as Worker Empowerment and Control in a Chinese Data Work Platform, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(8), doi:10.1145/3686904
  • Marianne Aubin Le Quéré, Hope Schroeder, Casey Randazzo, Jie Gao, Ziv Epstein, Simon Tangi Perrault, David Mimno, Louise Barkhuus, Hanlin Li (2024): LLMs as Research Tools: Applications and Evaluations in HCI Data Work, In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613905.3636301
  • Michael Muller, Cecilia Aragon, Shion Guha, Marina Kogan, Gina Neff, Cathrine Seidelin, Katie Shilton, Anissa Tanweer (2020): Interrogating Data Science, In: Companion Publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing, doi:10.1145/3406865.3418584
  • Devansh Saxena, Erhardt Graeff, Shion Guha, EunJeong Cheon, Pedro Reynolds-Cuéllar, Dawn Walker, Christoph Becker, Kenneth R. Fleischmann (2020): Collective Organizing and Social Responsibility at CSCW, In: Companion Publication of the 2020 Conference on Computer Supported Cooperative Work and Social Computing, doi:10.1145/3406865.3418593
  • Adriana Alvarado Garcia, Ivana Feldfeber, Milagros Miceli, Saide Mobayed, Helena Suárez Val (2022): Crossing Data: Building Bridges with Activist and Academic Practices from and for Latin America (Cruzar datos: Tendiendo Puentes con Prácticas Activistas y Académicas desde y para América Latina), In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, doi:10.1145/3491101.3505222
  • Scott Allen Cambo, Darren Gergle (2022): Model Positionality and Computational Reflexivity: Promoting Reflexivity in Data Science, In: CHI Conference on Human Factors in Computing Systems, doi:10.1145/3491102.3501998
  • Parikshit Narendra Mahalle, Gitanjali Rahul Shinde, Priya Dudhale Pise, Jyoti Yogesh Deshmukh (2021): Introduction to Data Science, In: Studies in Big Data, doi:10.1007/978-981-16-5160-1_1
  • Adriana Alvarado Garcia, Marisol Wong-Villacres, Milagros Miceli, Benjamín Hernández, Christopher A Le Dantec (2023): Mobilizing Social Media Data: Reflections of a Researcher Mediating between Data and Organization, In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3544548.3580916
  • Michael Muller, Anna Kantosalo, Mary Lou Maher, Charles Patrick Martin, Greg Walsh (2024): GenAICHI 2024: Generative AI and HCI at CHI 2024, In: Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613905.3636294
  • Victoria Chui, Jessica Pater, Tammy Toscos, Shion Guha (2023): Applying Human-Centered Data Science to Healthcare: Hyperlocal Modeling of COVID-19 Hospitalizations, In: Companion Proceedings of the 2023 ACM International Conference on Supporting Group Work, doi:10.1145/3565967.3570979
  • David Piorkowski, Soya Park, April Yi Wang, Dakuo Wang, Michael Muller, Felix Portnoy (2021): How AI Developers Overcome Communication Challenges in a Multidisciplinary Team, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(5), doi:10.1145/3449205
  • Kathleen Pine, Claus Bossen, Naja Holten Møller, Milagros Miceli, Alex Jiahong Lu, Yunan Chen, Leah Horgan, Zhaoyuan Su, Gina Neff, Melissa Mazmanian (2022): Investigating Data Work Across Domains, In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, doi:10.1145/3491101.3503724
  • Annabel Rothschild, Amanda Meng, Carl DiSalvo, Britney Johnson, Ben Rydal Shapiro, Betsy DiSalvo (2022): Interrogating Data Work as a Community of Practice, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(6), doi:10.1145/3555198
  • Michael Muller, Lydia B Chilton, Anna Kantosalo, Q. Vera Liao, Mary Lou Maher, Charles Patrick Martin, Greg Walsh (2023): GenAICHI 2023: Generative AI and HCI at CHI 2023, In: Extended Abstracts of the 2023 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3544549.3573794
  • Kevin R. McKee (2024): Human Participants in AI Research: Ethics and Transparency in Practice, In: IEEE Transactions on Technology and Society 3(5), doi:10.1109/tts.2024.3446183
  • Milagros Miceli, Julian Posada, Tianling Yang (2022): Studying Up Machine Learning Data, In: Proceedings of the ACM on Human-Computer Interaction GROUP(6), doi:10.1145/3492853
  • Trine Rask Nielsen, Naja Holten Møller (2022): Data as a Lens for Understanding what Constitutes Credibility in Asylum Decision-making, In: Proceedings of the ACM on Human-Computer Interaction GROUP(6), doi:10.1145/3492825
  • Anissa Tanweer, Cecilia R Aragon, Michael Muller, Shion Guha, Samir Passi, Gina Neff, Marina Kogan (2022): Interrogating Human-centered Data Science: Taking Stock of Opportunities and Limitations, In: CHI Conference on Human Factors in Computing Systems Extended Abstracts, doi:10.1145/3491101.3503740
  • Diane Linke, Claudia Müller-Birn (2024): Identifying Characteristics of Reflection Triggers in Data Science Ethics Education, In: Proceedings of Mensch und Computer 2024, doi:10.1145/3670653.3677486
  • Dilruba Showkat, Angela D. R. Smith, Wang Lingqing, Alexandra To (2023): “Who is the right homeless client?”: Values in Algorithmic Homelessness Service Provision and Machine Learning Research, In: Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3544548.3581010
  • Emma Harvey, Hauke Sandhaus, Abigail Z. Jacobs, Emanuel Moss, Mona Sloane (2024): The Cadaver in the Machine: The Social Practices of Measurement and Validation in Motion Capture Technology, In: Proceedings of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613904.3642004
  • Alex H. Poole (2023): Data Flourishing: Developing <scp>Human‐Centered</scp> Data Science through Communities of Ethical Practice, In: Proceedings of the Association for Information Science and Technology 1(60), doi:10.1002/pra2.793
  • Michael Muller, Christine T. Wolf, Josh Andres, Michael Desmond, Narendra Nath Joshi, Zahra Ashktorab, Aabhas Sharma, Kristina Brimijoin, Qian Pan, Evelyn Duesterwald, Casey Dugan (2021): Designing Ground Truth and the Social Life of Labels, In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3411764.3445402
  • Michael Muller, Angelika Strohmayer (2022): Forgetting Practices in the Data Sciences, In: CHI Conference on Human Factors in Computing Systems, doi:10.1145/3491102.3517644
  • Ju Yeon Jung, Tom Steinberger, Chaehan So (2023): Towards Actionable Data Science: Domain Experts as End-Users of Data Science Systems, In: Computer Supported Cooperative Work (CSCW) 3(33), doi:10.1007/s10606-023-09475-6
  • Dilruba Showkat, Eric P. S. Baumer (2021): Where Do Stories Come From? Examining the Exploration Process in Investigative Data Journalism, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(5), doi:10.1145/3479534
  • Ramaravind Kommiya Mothilal, Shion Guha, Syed Ishtiaque Ahmed (2024): Towards a Non-Ideal Methodological Framework for Responsible ML, In: Proceedings of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613904.3642501
Please note: Providing information about citations is only possible thanks to to the open metadata APIs provided by crossref.org and opencitations.net. These lists may be incomplete due to unavailable citation data.source: opencitations.net, crossref.org