Twitter Zombie: Architecture for Capturing, Socially Transforming and Analyzing the Twittersphere

dc.contributor.authorBlack, Alan
dc.contributor.authorMascaro, Christopher
dc.contributor.authorGallagher, Michael
dc.contributor.authorGoggins, Sean P.
dc.date.accessioned2023-06-08T11:45:08Z
dc.date.available2023-06-08T11:45:08Z
dc.date.issued2012
dc.description.abstractSocial computational systems emerge in the wild on popular social networking sites like Facebook and Twitter, but there remains confusion about the relationship between social interactions and the technical traces of interaction left behind through use. Twitter interactions and social experience are particularly challenging to make sense of because of the wide range of tools used to access Twitter (text message, website, iPhone, TweetDeck and others), and the emergent set of practices for annotating message context (hashtags, reply to's and direct messaging). Further, Twitter is used as a back channel of communication in a wide range of contexts, ranging from disaster relief to watching television. Our study examines Twitter as a transport protocol that is used differently in different socio-technical contexts, and presents an analysis of how researchers might begin to approach studies of Twitter interactions with a more reflexive stance toward the application programming interfaces (APIs) Twitter provides. We conduct a careful review of existing literature examining socio-technical phenomena on Twitter, revealing a collective inconsistency in the description of data gathering and analysis methods. In this paper, we present a candidate architecture and methodological approach for examining specific parts of the Twittersphere. Our contribution begins a discussion among social media researchers on the topic of how to systematically and consistently make sense of the social phenomena that emerge through Twitter. This work supports the comparative analysis of Twitter studies and the development of social media theories.en
dc.identifier.doi10.1145/2389176.2389211
dc.identifier.urihttps://dl.eusset.eu/handle/20.500.12015/4940
dc.language.isoen
dc.publisherAssociation for Computing Machinery
dc.relation.ispartofProceedings of the 2012 ACM International Conference on Supporting Group Work
dc.subjectsocial media
dc.subjectmethods
dc.subjecttwitter
dc.subjectdata management
dc.subjectdata collection
dc.titleTwitter Zombie: Architecture for Capturing, Socially Transforming and Analyzing the Twittersphereen
gi.citation.publisherPlaceNew York, NY, USA
gi.citation.startPage229–238
gi.citations.count26
gi.citations.elementYoungsub Han, Hyeoncheol Lee, Yanggon Kim (2015): A real-time knowledge extracting system from social big data using distributed architecture, In: Proceedings of the 2015 Conference on research in adaptive and convergent systems, doi:10.1145/2811411.2811481
gi.citations.elementSean P. Goggins, Christopher Mascaro, Giuseppe Valetto (2013): Group informatics: A methodological approach and ontology for sociotechnical group research, In: Journal of the American Society for Information Science and Technology 3(64), doi:10.1002/asi.22802
gi.citations.elementShalin Hai-Jew (2015): Eavesdropping on Narrowcast Self-talk and Microchats on Twitter, In: Advances in Multimedia and Interactive Technologies, doi:10.4018/978-1-4666-8696-0.ch003
gi.citations.elementSean Goggins, Eva Petakovic (2014): Connecting Theory to Social Technology Platforms, In: American Behavioral Scientist 10(58), doi:10.1177/0002764214527093
gi.citations.elementXiaokang Zhou, Wei Wang, Qun Jin (2014): Multi-dimensional attributes and measures for dynamical user profiling in social networking environments, In: Multimedia Tools and Applications 14(74), doi:10.1007/s11042-014-2230-9
gi.citations.elementMariluz Congosto, Pablo Basanta-Val, Luis Sanchez-Fernandez (2017): T-Hoarder: A framework to process Twitter data streams, In: Journal of Network and Computer Applications, doi:10.1016/j.jnca.2017.01.029
gi.citations.elementStine Lomborg, Anja Bechmann (2014): Using APIs for Data Collection on Social Media, In: The Information Society 4(30), doi:10.1080/01972243.2014.915276
gi.citations.elementJenna Jacobson, Christopher Mascaro (2016): Movember: Twitter Conversations of a Hairy Social Movement, In: Social Media + Society 2(2), doi:10.1177/2056305116637103
gi.citations.elementRomain Giovanetti, Luigi Lancieri (2016): Model of computer architecture for online social networks flexible data analysis: The case of Twitter data, In: 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), doi:10.1109/asonam.2016.7752310
gi.citations.elementEmad Khazraee (2019): Mapping the political landscape of Persian Twitter: The case of 2013 presidential election, In: Big Data & Society 1(6), doi:10.1177/2053951719835232
gi.citations.elementAhmed Abdeen Hamed, Xindong Wu, Alan Rubin (2014): A twitter recruitment intelligent system: association rule mining for smoking cessation, In: Social Network Analysis and Mining 1(4), doi:10.1007/s13278-014-0212-6
gi.citations.elementChristopher Mascaro, Denise Agosto, Sean P. Goggins (2016): The Method to the Madness, In: Proceedings of the 7th 2016 International Conference on Social Media & Society - SMSociety '16, doi:10.1145/2930971.2930987
gi.citations.elementChristopher Mascaro, Denise Agosto, Sean P. Goggins (2016): One-Sided Conversations, In: Proceedings of the 17th International Digital Government Research Conference on Digital Government Research, doi:10.1145/2912160.2912185
gi.citations.elementPhilip M Massey, Amy Leader, Elad Yom-Tov, Alexandra Budenz, Kara Fisher, Ann C Klassen (2016): Applying Multiple Data Collection Tools to Quantify Human Papillomavirus Vaccine Communication on Twitter, In: Journal of Medical Internet Research 12(18), doi:10.2196/jmir.6670
gi.citations.elementMarko M. Skoric (2013): The implications of big data for developing and transitional economies: Extending the Triple Helix?, In: Scientometrics 1(99), doi:10.1007/s11192-013-1106-5
gi.citations.elementOshini Goonetilleke, Timos Sellis, Xiuzhen Zhang, Saket Sathe (2014): Twitter analytics, In: ACM SIGKDD Explorations Newsletter 1(16), doi:10.1145/2674026.2674029
gi.citations.elementChristopher Mascaro, Alan Black, Sean Goggins (2012): Tweet recall, In: Proceedings of the 17th ACM international conference on Supporting group work, doi:10.1145/2389176.2389233
gi.citations.elementJunjun Yin, Yizhao Gao, Zhenhong Du, Shaowen Wang (2016): Exploring Multi-Scale Spatiotemporal Twitter User Mobility Patterns with a Visual-Analytics Approach, In: ISPRS International Journal of Geo-Information 10(5), doi:10.3390/ijgi5100187
gi.citations.elementRachel M. Magee, Melinda Sebastian, Alison Novak, Christopher M. Mascaro, Alan Black, Sean P. Goggins (2013): #TwitterPlay, In: Proceedings of the 2013 conference on Computer supported cooperative work companion, doi:10.1145/2441955.2442005
gi.citations.elementHariton Efstathiades, Demetris Antoniades, George Pallis, Marios D. Dikaiakos (2016): Distributed Large-Scale Data Collection in Online Social Networks, In: 2016 IEEE 2nd International Conference on Collaboration and Internet Computing (CIC), doi:10.1109/cic.2016.056
gi.citations.elementIan Graves, Nora McDonald, Sean P Goggins (2014): Sifting signal from noise: A new perspective on the meaning of tweets about the “big game”, In: New Media & Society 2(18), doi:10.1177/1461444814541783
gi.citations.elementDavid A. Broniatowski, Conrad Tucker (2017): Assessing causal claims about complex engineered systems with quantitative data: internal, external, and construct validity, In: Systems Engineering 6(20), doi:10.1002/sys.21414
gi.citations.elementXiaokang Zhou, Qun Jin (2014): A heuristic approach to discovering user correlations from organized social stream data, In: Multimedia Tools and Applications 9(76), doi:10.1007/s11042-014-2153-5
gi.citations.elementYudith Cardinale, Irvin Dongo, Germán Robayo, David Cabeza, Ana Aguilera, Sergio Medina (2021): T-CREo: A Twitter Credibility Analysis Framework, In: IEEE Access, doi:10.1109/access.2021.3060623
gi.citations.elementKay Michel, Marcellus Smith, Brandon Brown, Michael King, Gerry Dozier (2021): A Study of Social Network Messages During the COVID-19 Infodemic: Salient Features and the Propagation of Information Types, In: SoutheastCon 2021, doi:10.1109/southeastcon45413.2021.9401830
gi.citations.elementA. J. Million, Bradley Wade Bishop, Sean P. Goggins (2016): An exploration of “localness” on twitter during the 2012 U.S. elections, In: Proceedings of the Association for Information Science and Technology 1(53), doi:10.1002/pra2.2016.14505301085
gi.conference.locationSanibel Island, Florida, USA

Files

Collections