The Types, Roles, and Practices of Documentation in Data Analytics Open Source Software Libraries

dc.contributor.authorGeiger, R. Stuart
dc.contributor.authorVaroquaux, Nelle
dc.contributor.authorMazel-Cabasse, Charlotte
dc.contributor.authorHoldgraf, Chris
dc.date.accessioned2020-06-06T13:06:16Z
dc.date.available2020-06-06T13:06:16Z
dc.date.issued2018
dc.date.issued2018
dc.description.abstractComputational research and data analytics increasingly relies on complex ecosystems of open source software (OSS) “libraries” – curated collections of reusable code that programmers import to perform a specific task. Software documentation for these libraries is crucial in helping programmers/analysts know what libraries are available and how to use them. Yet documentation for open source software libraries is widely considered low-quality. This article is a collaboration between CSCW researchers and contributors to data analytics OSS libraries, based on ethnographic fieldwork and qualitative interviews. We examine several issues around the formats, practices, and challenges around documentation in these largely volunteer-based projects. There are many different kinds and formats of documentation that exist around such libraries, which play a variety of educational, promotional, and organizational roles. The work behind documentation is similarly multifaceted, including writing, reviewing, maintaining, and organizing documentation. Different aspects of documentation work require contributors to have different sets of skills and overcome various social and technical barriers. Finally, most of our interviewees do not report high levels of intrinsic enjoyment for doing documentation work (compared to writing code). Their motivation is affected by personal and project-specific factors, such as the perceived level of credit for doing documentation work versus more ‘technical’ tasks like adding new features or fixing bugs. In studying documentation work for data analytics OSS libraries, we gain a new window into the changing practices of data-intensive research, as well as help practitioners better understand how to support this often invisible and infrastructural work in their projects.de
dc.identifier.doi10.1007/s10606-018-9333-1
dc.identifier.pissn1573-7551
dc.identifier.urihttp://dx.doi.org/10.1007/s10606-018-9333-1
dc.identifier.urihttps://dl.eusset.eu/handle/20.500.12015/3777
dc.publisherSpringer
dc.relation.ispartofComputer Supported Cooperative Work (CSCW): Vol. 27, No. 3-6
dc.relation.ispartofseriesComputer Supported Cooperative Work (CSCW)
dc.subjectCollaboration
dc.subjectDocumentation
dc.subjectEthnography
dc.subjectInfrastructure
dc.subjectInvisible work
dc.subjectMotivations
dc.subjectOpen source
dc.subjectPeer production
dc.subjectStandards
dc.titleThe Types, Roles, and Practices of Documentation in Data Analytics Open Source Software Librariesde
dc.typeText/Journal Article
gi.citation.endPage802
gi.citation.startPage767
gi.citations.count23
gi.citations.elementJunran Yang, Andrew M. McNutt, Leilani Battle (2024): Considering Visualization Example Galleries, In: 2024 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC), doi:10.1109/vl/hcc60511.2024.00043
gi.citations.elementNicholas A. Bokulich, Michal Ziemski, Michael S. Robeson, Benjamin D. Kaehler (2020): Measuring the microbiome: Best practices for developing and benchmarking microbiomics methods, In: Computational and Structural Biotechnology Journal, doi:10.1016/j.csbj.2020.11.049
gi.citations.elementMathieu Nassif, Martin P. Robillard (2025): Non-Linear Software Documentation with Interactive Code Examples, In: ACM Transactions on Software Engineering and Methodology 2(34), doi:10.1145/3702976
gi.citations.elementAlex Cummaudo, Rajesh Vasa, John Grundy, Mohamed Abdelrazek (2022): Requirements of API Documentation: A Case Study into Computer Vision Services, In: IEEE Transactions on Software Engineering 6(48), doi:10.1109/tse.2020.3047088
gi.citations.elementNicholas Gorman, Iain MacGill, Anna Bruce (2024): How to support the adoption of open-source energy system modelling software? Insights from interviews with users and developers, In: Energy Research & Social Science, doi:10.1016/j.erss.2024.103479
gi.citations.elementApril Yi Wang, Dakuo Wang, Jaimie Drozdal, Xuye Liu, Soya Park, Steve Oney, Christopher Brooks (2021): What Makes a Well-Documented Notebook? A Case Study of Data Scientists’ Documentation Practices in Kaggle, In: Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, doi:10.1145/3411763.3451617
gi.citations.elementDavid Ojimaojo Ebiloma, Clinton Ohis Aigbavboa, Chimay Anumba (2023): Towards Digital Twin Maintenance Management of Health Facilities in Nigeria: The Need for Maintenance Documentation, In: Buildings 5(13), doi:10.3390/buildings13051339
gi.citations.elementTaylor Reiter, Phillip T Brooks†, Luiz Irber†, Shannon E K Joslin†, Charles M Reid†, Camille Scott†, C Titus Brown, N Tessa Pierce-Ward (2021): Streamlining data-intensive biology with workflow systems, In: GigaScience 1(10), doi:10.1093/gigascience/giaa140
gi.citations.elementJumana Almahmoud, Robert DeLine, Steven M. Drucker (2021): How Teams Communicate about the Quality of ML Models: A Case Study at an International Technology Company, In: Proceedings of the ACM on Human-Computer Interaction GROUP(5), doi:10.1145/3463934
gi.citations.elementEllen Balka, Ina Wagner (2020): A Historical View of Studies of Women’s Work, In: Computer Supported Cooperative Work (CSCW) 2(30), doi:10.1007/s10606-020-09387-9
gi.citations.elementSofia Migliorini, Roberto Verdecchia, Ivano Malavolta, Patricia Lago, Enrico Vicario (2024): Architectural Views: The State of Practice in Open-Source Software Projects, In: Lecture Notes in Computer Science, doi:10.1007/978-3-031-70797-1_27
gi.citations.elementMichel Muszynski, Sven Lugtigheid, Fernando Castor, Sjaak Brinkkemper (2022): A Study on the Software Architecture Documentation Practices and Maturity in Open-Source Software Development, In: 2022 IEEE 19th International Conference on Software Architecture (ICSA), doi:10.1109/icsa53651.2022.00013
gi.citations.elementHannes Hauswedell (2021): The Design of SeqAn3, In: Computational Biology, doi:10.1007/978-3-030-90990-1_4
gi.citations.elementEi Pa Pa Pe-Than, Laura Dabbish, James Herbsleb (2021): Open Collaborative Writing, In: Proceedings of the ACM on Human-Computer Interaction CSCW1(5), doi:10.1145/3449211
gi.citations.elementKarthik Ram, Carl Boettiger, Scott Chamberlain, Noam Ross, Maelle Salmon, Stefanie Butland (2019): A Community of Practice Around Peer Review for Long-Term Research Software Sustainability, In: Computing in Science & Engineering 2(21), doi:10.1109/mcse.2018.2882753
gi.citations.elementHannes Hauswedell (2021): The SeqAn Library (Versions 1 and 2), In: Computational Biology, doi:10.1007/978-3-030-90990-1_2
gi.citations.elementJane Hsieh, Joselyn Kim, Laura Dabbish, Haiyi Zhu (2023): "Nip it in the Bud": Moderation Strategies in Open Source Software Projects and the Role of Bots, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(7), doi:10.1145/3610092
gi.citations.elementOihane Cereceda, Danielle E.A. Quinn (2020): A graduate student perspective on overcoming barriers to interacting with open-source software, In: FACETS 1(5), doi:10.1139/facets-2019-0020
gi.citations.elementTaylor Reiter, Phillip T. Brooks, Luiz Irber, Shannon E.K. Joslin, Charles M. Reid, Camille Scott, C. Titus Brown, N. Tessa Pierce (2020): Streamlining Data-Intensive Biology With Workflow Systems, doi:10.1101/2020.06.30.178673
gi.citations.elementXin Tan, Minghui Zhou (2019): How to Communicate when Submitting Patches, In: Proceedings of the ACM on Human-Computer Interaction CSCW(3), doi:10.1145/3359210
gi.citations.elementSam Lau, Justin Eldridge, Shannon Ellis, Aaron Fraenkel, Marina Langlois, Suraj Rampure, Janine Tiefenbruck, Philip J. Guo (2022): The Challenges of Evolving Technical Courses at Scale: Four Case Studies of Updating Large Data Science Courses, In: Proceedings of the Ninth ACM Conference on Learning @ Scale, doi:10.1145/3491140.3528278
gi.citations.elementLi Feng, Ryan Yen, Yuzhe You, Mingming Fan, Jian Zhao, Zhicong Lu (2024): CoPrompt: Supporting Prompt Sharing and Referring in Collaborative Natural Language Programming, In: Proceedings of the CHI Conference on Human Factors in Computing Systems, doi:10.1145/3613904.3642212
gi.citations.elementApril Yi Wang, Dakuo Wang, Jaimie Drozdal, Michael Muller, Soya Park, Justin D. Weisz, Xuye Liu, Lingfei Wu, Casey Dugan (2022): Documentation Matters: Human-Centered AI System to Assist Data Science Code Documentation in Computational Notebooks, In: ACM Transactions on Computer-Human Interaction 2(29), doi:10.1145/3489465

Files