The Evolution of Power and Standard Wikidata Editors: Comparing Editing Behavior over Time to Predict Lifespan and Volume of Edits

dc.contributor.authorSarasua, Cristina
dc.contributor.authorChecco, Alessandro
dc.contributor.authorDemartini, Gianluca
dc.contributor.authorDifallah, Djellel
dc.contributor.authorFeldman, Michael
dc.contributor.authorPintscher, Lydia
dc.date.accessioned2020-06-06T13:06:08Z
dc.date.available2020-06-06T13:06:08Z
dc.date.issued2019
dc.date.issued2019
dc.description.abstractKnowledge bases are becoming a key asset leveraged for various types of applications on the Web, from search engines presenting ‘entity cards’ as the result of a query, to the use of structured data of knowledge bases to empower virtual personal assistants. Wikidata is an open general-interest knowledge base that is collaboratively developed and maintained by a community of thousands of volunteers. One of the major challenges faced in such a crowdsourcing project is to attain a high level of editor engagement. In order to intervene and encourage editors to be more committed to editing Wikidata, it is important to be able to predict at an early stage, whether an editor will or not become an engaged editor. In this paper, we investigate this problem and study the evolution that editors with different levels of engagement exhibit in their editing behaviour over time. We measure an editor’s engagement in terms of (i) the volume of edits provided by the editor and (ii) their lifespan (i.e. the length of time for which an editor is present at Wikidata). The large-scale longitudinal data analysis that we perform covers Wikidata edits over almost 4 years. We monitor evolution in a session-by-session- and monthly-basis, observing the way the participation, the volume and the diversity of edits done by Wikidata editors change. Using the findings in our exploratory analysis, we define and implement prediction models that use the multiple evolution indicators.de
dc.identifier.doi10.1007/s10606-018-9344-y
dc.identifier.pissn1573-7551
dc.identifier.urihttp://dx.doi.org/10.1007/s10606-018-9344-y
dc.identifier.urihttps://dl.eusset.eu/handle/20.500.12015/3748
dc.publisherSpringer
dc.relation.ispartofComputer Supported Cooperative Work (CSCW): Vol. 28, No. 5
dc.relation.ispartofseriesComputer Supported Cooperative Work (CSCW)
dc.subjectEvolution
dc.subjectKnowledge
dc.subjectPower editors
dc.subjectStandard editors
dc.subjectWikidata
dc.titleThe Evolution of Power and Standard Wikidata Editors: Comparing Editing Behavior over Time to Predict Lifespan and Volume of Editsde
dc.typeText/Journal Article
gi.citation.endPage882
gi.citation.startPage843
gi.citations.count10
gi.citations.elementZaina Shaik, Filip Ilievski, Fred Morstatter (2021): Analyzing Race and Citizenship Bias in Wikidata, In: 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), doi:10.1109/mass52906.2021.00099
gi.citations.elementKholoud AlGhamdi, Miaojing Shi, Elena Simperl (2021): Learning to Recommend Items to Wikidata Editors, In: Lecture Notes in Computer Science, doi:10.1007/978-3-030-88361-4_10
gi.citations.elementParamita Das, Bhanu Prakash Reddy Guda, Debajit Chakraborty, Soumya Sarkar, Animesh Mukherjee (2021): When Expertise Gone Missing: Uncovering the Loss of Prolific Contributors in Wikipedia, In: Lecture Notes in Computer Science, doi:10.1007/978-3-030-91669-5_23
gi.citations.elementYihan Yu, David W. McDonald (2023): "Why do you need 400 photographs of 400 different Lockheed Constellation?": Value Expressions by Contributors and Users of Wikimedia Commons, In: Proceedings of the ACM on Human-Computer Interaction CSCW2(7), doi:10.1145/3610094
gi.citations.elementBrian Dobreski, Laura Ridenour, Melissa Resnick (2023): Reproductive Health and Semantics: Representations of Abortion in Semantic Models and Search Applications, In: Social Media + Society 3(9), doi:10.1177/20563051231195553
gi.citations.elementElisavet Koutsiana, Gabriel Maia Rocha Amaral, Neal Reeves, Albert Meroño-Peñuela, Elena Simperl (2023): An analysis of discussions in collaborative knowledge engineering through the lens of Wikidata, In: Journal of Web Semantics, doi:10.1016/j.websem.2023.100799
gi.citations.elementDavid Abián, Albert Meroño-Peñuela, Elena Simperl (2022): An Analysis of Content Gaps Versus User Needs in the Wikidata Knowledge Graph, In: Lecture Notes in Computer Science, doi:10.1007/978-3-031-19433-7_21
gi.citations.elementHoucemeddine Turki, Dariusz Jemielniak, Mohamed A. Hadj Taieb, Jose E. Labra Gayo, Mohamed Ben Aouicha, Mus’ab Banat, Thomas Shafee, Eric Prud’hommeaux, Tiago Lubiana, Diptanshu Das, Daniel Mietchen (2022): Using logical constraints to validate statistical information about disease outbreaks in collaborative knowledge graphs: the case of COVID-19 epidemiology in Wikidata, In: PeerJ Computer Science, doi:10.7717/peerj-cs.1085
gi.citations.elementMichael Luggen, Djellel Difallah, Cristina Sarasua, Gianluca Demartini, Philippe Cudré-Mauroux (2019): Non-parametric Class Completeness Estimators for Collaborative Knowledge Graphs—The Case of Wikidata, In: Lecture Notes in Computer Science, doi:10.1007/978-3-030-30793-6_26
gi.citations.elementAlessandro Piscopo, Elena Simperl (2018): Who Models the World?, In: Proceedings of the ACM on Human-Computer Interaction CSCW(2), doi:10.1145/3274410

Files