Privacy in Crowdsourcing: a Review of the Threats and Challenges
dc.contributor.author | Xia, Huichuan | |
dc.contributor.author | McKernan, Brian | |
dc.date.accessioned | 2020-06-13T20:53:42Z | |
dc.date.available | 2020-06-13T20:53:42Z | |
dc.date.issued | 2020 | |
dc.date.issued | 2020 | |
dc.description.abstract | Crowdsourcing platforms such as Amazon Mechanical Turk (MTurk) are popular and widely used in both academic and non-academic realms, but privacy threats and challenges in crowdsourcing have not been extensively reviewed. To help push the field forward in important new directions, this paper first reviews the privacy threats in different types of crowdsourcing based on Solove’s taxonomy of privacy and Brabham’s typology of crowdsourcing. Then, the paper explores the privacy challenges associated with the characteristics of crowdsourcing task, platform, requesters, and crowd workers. These privacy challenges are discussed and categorized into both theoretical and practical challenges. Based on the review and discussion, this paper proposes a set of strategies to better understand and address many of the privacy threats and challenges in crowdsourcing. Finally, the paper concludes by suggesting research implications for the future work. | de |
dc.identifier.doi | 10.1007/s10606-020-09374-0 | |
dc.identifier.pissn | 1573-7551 | |
dc.identifier.uri | https://doi.org/10.1007/s10606-020-09374-0 | |
dc.identifier.uri | https://dl.eusset.eu/handle/20.500.12015/4056 | |
dc.publisher | Springer | |
dc.relation.ispartof | Computer Supported Cooperative Work (CSCW): Vol. 29, No. 3 | |
dc.relation.ispartofseries | Computer Supported Cooperative Work (CSCW) | |
dc.subject | Crowdsourcing | |
dc.subject | Privacy threats | |
dc.subject | Privacy challenges | |
dc.subject | Privacy protection | |
dc.subject | Amazon Mechanical Turk (MTurk) | |
dc.title | Privacy in Crowdsourcing: a Review of the Threats and Challenges | de |
dc.type | Text/Journal Article | |
gi.citation.endPage | 301 | |
gi.citation.startPage | 263 | |
gi.citations.count | 14 | |
gi.citations.element | Huichuan Xia (2023): Undue Influence or Exploitation — A Qualitative Inquiry into an Ethical Dilemma Around Payment in Crowd Work-Based Research in the U.S., In: Computer Supported Cooperative Work (CSCW) 3(33), doi:10.1007/s10606-023-09472-9 | |
gi.citations.element | Asif Laghari, Hui He, Asiya Khan, Rashid Laghari, Shoulin Yin, Jiachi Wang (2022): Crowdsourcing platform for QoE evaluation for cloud multimedia services, In: Computer Science and Information Systems 3(19), doi:10.2298/csis220322038l | |
gi.citations.element | Yuxiang Ye, Huichuan Xia, Chang Liu (2024): “Our Privacy Needs to be Protected Equally as Everybody's”—A Preliminary Study of Crowdsourced Delivery Riders' Privacy Concerns in China, In: Proceedings of the Association for Information Science and Technology 1(61), doi:10.1002/pra2.1216 | |
gi.citations.element | Huichuan Xia (2022): What scholars and <scp>IRBs</scp> talk when they talk about the Belmont principles in crowd <scp>work‐based</scp> research, In: Journal of the Association for Information Science and Technology 1(74), doi:10.1002/asi.24724 | |
gi.citations.element | Dominik Antonowicz, Regina Lenart-Gansiniec, Łukasz Sułkowski (2024): Możliwości wykorzystania crowdsourcingu naukowego do operacjonalizacji problemu badawczego w badaniach nad szkolnictwem wyższym, In: Przegląd Socjologii Jakościowej 3(20), doi:10.18778/1733-8069.20.3.08 | |
gi.citations.element | Ellen Z. Zhang, Yunguo Guan, Rongxing Lu, Harry Zhang (2024): An Efficient Heap Tree-Based Range Query Scheme Under Local Differential Privacy, In: IEEE Internet of Things Journal 11(11), doi:10.1109/jiot.2024.3371828 | |
gi.citations.element | Xiaoqian Jiang, Haiyang Diao, Cangqi Zhou, Jing Zhang (2024): Timeliness-Selective Incentive Federated Crowdsourcing, In: 2024 IEEE International Conference on Web Services (ICWS), doi:10.1109/icws62655.2024.00083 | |
gi.citations.element | Masoud Kamali, Mohammad Reza Malek, Sara Saeedi, Steve Liang (2021): A Blockchain-Based Spatial Crowdsourcing System for Spatial Information Collection Using a Reward Distribution, In: Sensors 15(21), doi:10.3390/s21155146 | |
gi.citations.element | Jean Zahn, José Viterbo, Cristiano Maciel, Flavia Bernardini (2024): A Framework for Implanting Citizen-Sourcing Platforms in Municipal Ombudsman Offices, In: Proceedings of the 25th Annual International Conference on Digital Government Research, doi:10.1145/3657054.3657118 | |
gi.citations.element | Sami Alkhatib, Ryan Kelly, Jenny Waycott, George Buchanan, Marthie Grobler, Shuo Wang (2021): “Who Wants to Know all this Stuff?!”: Understanding Older Adults’ Privacy Concerns in Aged Care Monitoring Devices, In: Interacting with Computers 5(33), doi:10.1093/iwc/iwab029 | |
gi.citations.element | Yunhui Li, Liang Chang, Long Li, Xuguang Bao, Tianlong Gu (2021): Key Research Issues and Related Technologies in Crowdsourcing Data Collection, In: Wireless Communications and Mobile Computing 1(2021), doi:10.1155/2021/8745897 | |
gi.citations.element | Ellen Z. Zhang, Yunguo Guan, Yantao Yu, Rongxing Lu, Harry Zhang (2024): An Efficient Range Sum Query Scheme Under Local Differential Privacy, In: ICC 2024 - IEEE International Conference on Communications, doi:10.1109/icc51166.2024.10622289 | |
gi.citations.element | Huichuan Xia (2022): The original sin of crowd work for human subjects research, In: Journal of Information, Communication and Ethics in Society 3(20), doi:10.1108/jices-12-2021-0126 | |
gi.citations.element | Xuefeng Zhang, Enjun Xia, Chao Shen, Jiafu Su (2022): Factors Influencing Solvers’ Behaviors in Knowledge-Intensive Crowdsourcing: A Systematic Literature Review, In: Journal of Theoretical and Applied Electronic Commerce Research 4(17), doi:10.3390/jtaer17040066 |