Veterans, PTSD and Social Media: Towards Identifying Trauma Text Categories Using Grounded Theory
dc.contributor.author | Coelho, Joseph | |
dc.contributor.author | Hooyer, Katinka | |
dc.contributor.author | Olsen, Danielle | |
dc.contributor.author | Annapureddy, Priyanka | |
dc.contributor.author | Johnson, Nadiyah | |
dc.contributor.author | Madiraju, Praveen | |
dc.contributor.author | Franco, Zeno | |
dc.contributor.author | Flower, Mark | |
dc.contributor.author | Ahamed, Sheikh Iqbal | |
dc.date.accessioned | 2023-03-17T22:48:52Z | |
dc.date.available | 2023-03-17T22:48:52Z | |
dc.date.issued | 2020 | |
dc.description.abstract | Text classification using machine learning can be applied in various contexts such as in classifying research papers, identifying relevant news stories, and detecting fake reviews. Training an algorithm to perform such tasks generally requires a dataset with predefined labels. Valid labels for texts in a given domain can be predefined by domain experts. However, when it comes to free-form text from messaging applications and social networking sites it is difficult to predict what labels may be extracted from the text. Grounded theory provides a method by which concepts that emerge from data can be expressed as categories and properties. These categories and properties can then be arranged in a hierarchical class label structure that can be used to build a dataset for training models. This study focuses on text related to veterans with post traumatic stress disorder and identifies a hierarchical class label structure, with the future goal of applying this to prevent crisis situations. | en |
dc.identifier.doi | 10.1145/3323994.3369887 | |
dc.identifier.uri | https://dl.eusset.eu/handle/20.500.12015/4559 | |
dc.language.iso | en | |
dc.publisher | Association for Computing Machinery | |
dc.relation.ispartof | Companion Proceedings of the 2020 ACM International Conference on Supporting Group Work | |
dc.subject | mental health crisis | |
dc.subject | keyword identification | |
dc.subject | text categorization | |
dc.subject | grounded theory | |
dc.title | Veterans, PTSD and Social Media: Towards Identifying Trauma Text Categories Using Grounded Theory | en |
dc.type | Text/Conference Paper | |
gi.citation.startPage | 115–118 | |
gi.citations.count | 4 | |
gi.citations.element | Kendall J Sharp, Julia A Vitagliano, Elissa R Weitzman, Susan Fitzgerald, Suzanne E Dahlberg, S Bryn Austin (2021): Peer-to-Peer Social Media Communication About Dietary Supplements Used for Weight Loss and Sports Performance Among Military Personnel: Pilot Content Analysis of 11 Years of Posts on Reddit (Preprint), doi:10.2196/preprints.28957 | |
gi.citations.element | Farhat Tasnim Progga, Sabirat Rubya (2023): "just like therapy!": Investigating the Potential of Storytelling in Online Postpartum Depression Communities, In: Companion Proceedings of the 2023 ACM International Conference on Supporting Group Work, doi:10.1145/3565967.3570977 | |
gi.citations.element | Kendall J Sharp, Julia A Vitagliano, Elissa R Weitzman, Susan Fitzgerald, Suzanne E Dahlberg, S Bryn Austin (2021): Peer-to-Peer Social Media Communication About Dietary Supplements Used for Weight Loss and Sports Performance Among Military Personnel: Pilot Content Analysis of 11 Years of Posts on Reddit, In: JMIR Formative Research 10(5), doi:10.2196/28957 | |
gi.citations.element | Farhat Tasnim Progga (2024): Storytelling as a Social Support Tool for Perinatal Mental Health and Wellbeing, In: Companion Publication of the 2024 Conference on Computer-Supported Cooperative Work and Social Computing, doi:10.1145/3678884.3682051 | |
gi.conference.location | Sanibel Island, Florida, USA |