Enhancing Information Scent: Identifying and Recommending Quality Tags

dc.contributor.authorZhang, Shaoke
dc.contributor.authorFarooq, Umer
dc.contributor.authorCarroll, John M.
dc.date.accessioned2023-06-08T11:44:30Z
dc.date.available2023-06-08T11:44:30Z
dc.date.issued2009
dc.description.abstractWe describe a scenario of tag use and an empirical study of tags as socio-cognitive artifacts providing information scent. We articulated a three-step use scenario of tags, and used it to conceptualize tag quality" as determined by use. We designed and conducted a user study to explore what attributes of tags and taggers predict the user-rated "quality" of tags. We found that frequency best predicted tag quality, while information entropy provided further refinement. We found that people rated our identified quality tags as higher in quality than general tags. But these identified quality tags were not perceived as better than self-generated tags. We derived a regression model for tag quality and discussed implications for social computing."en
dc.identifier.doi10.1145/1531674.1531676
dc.identifier.urihttps://dl.eusset.eu/handle/20.500.12015/4858
dc.language.isoen
dc.publisherAssociation for Computing Machinery
dc.relation.ispartofProceedings of the 2009 ACM International Conference on Supporting Group Work
dc.subjectsocial bookmarking
dc.subjectsense-making
dc.subjectquality tags
dc.titleEnhancing Information Scent: Identifying and Recommending Quality Tagsen
gi.citation.publisherPlaceNew York, NY, USA
gi.citation.startPage1–10
gi.citations.count7
gi.citations.elementLiuyi Tong, Hui Lin, Pengyi Zhang (2019): “I don't understand it so it can't be good”: Users' acg domain expertise and perceived quality of video tags, In: Proceedings of the Association for Information Science and Technology 1(56), doi:10.1002/pra2.174
gi.citations.elementNeela Sawant, Jia Li, James Z. Wang (2010): Automatic image semantic interpretation using social action and tagging data, In: Multimedia Tools and Applications 1(51), doi:10.1007/s11042-010-0650-8
gi.citations.elementHesham Allam, Michael Bliemel, Louise Spiteri, James Blustein, Hossam Ali-Hassan (2019): Applying a multi-dimensional hedonic concept of intrinsic motivation on social tagging tools: A theoretical model and empirical validation, In: International Journal of Information Management, doi:10.1016/j.ijinfomgt.2018.11.005
gi.citations.elementU. Cress, C. Held (2012): Harnessing collective knowledge inherent in tag clouds, In: Journal of Computer Assisted Learning 3(29), doi:10.1111/j.1365-2729.2012.00491.x
gi.citations.elementLei Li, Chengzhi Zhang (2014): Quality evaluation of social tags according to web resource types, In: Proceedings of the 23rd International Conference on World Wide Web, doi:10.1145/2567948.2578998
gi.citations.elementHyungil Suh, Jeungmin Oh, Wan Chul Yoon (2016): Which Tags Do We Remember in Personal Information Management?, In: International Journal of Human-Computer Interaction 7(32), doi:10.1080/10447318.2016.1181291
gi.citations.elementHesham Allam, James Blustein, Michael Bliemel, Louise Spiteri (2012): Exploring Factors Impacting Users' Attitude and Intention towards Social Tagging Systems, In: 2012 45th Hawaii International Conference on System Sciences, doi:10.1109/hicss.2012.267
gi.conference.locationSanibel Island, Florida, USA

Files

Collections