
THE ACTIVITY MODEL ENVIRONMENT: AN OBJECT-ORIENTED
FRAMEWORK FOR DESCRIBING ORGANISATIONAL COMMUNICATION

H. T. Smith, P.A. Hennessy, G.A. Lunt
Communications Research Group,
Department of Computer Science,

Nottingham University
Nottingham, NG7 2RD, England.

Abstract

This paper outlines a framework for modelling organisational
-·,communication. It also describes an object oriented
environment (the AME) that has been used to explore such
models. The AME consists of a database that holds a description
of the structure of an organisation and its on-going activities. A
rule interpreter makes use of the database to assist in the
processing of activity related messages and their routing between
organisational roles.

1. Introduction

Over the last decade there has been considerable research interest in co-operative
working, much of it driven by the increasingly sophisticated facilities offered by
computer systems and networks. Recently this work has focused on the
development of abstract frameworks that can be used to describe recurring patterns
of group communication. The background of such research has been varied, and
the resulting frameworks approach the problem from a wide range of viewpoints
(e.g. [Smit89] [Pank891 [Bowe88]). A comparison of several approaches can be found
in [Henn89].

The MacAll project [Smit87] resulted in the outline of one such framework, a
model of organisational structure which included objects such as departments,
people, roles, workspaces, file cabinets, folders, and documents. The model was
focused on organisational roles, each person in the organisation being bound to
one or more roles, each role being performed in a distinct workspace.

This paper describes the follow-on project (MacAll II) which incorporated formal
descriptions of organisational knowledge and patterns of communication into the
original framework. This was achieved by adding the following components to the
framework: activities, messages, information units (iunits), rules, and functions.

A prototype object oriented tool - the Activity Model Environment (AME) - has
been developed to explore models of organisations based on this framework. The
AME prototype consists of a database and an associated rule-based formalism for

The work described in this paper was supported by Digital.

160

representing activities and organisational states. Users interact with the
organisational model embedded in the AME by creating and playing roles. Activity
related communication proceeds via the exchange of messages between roles,
where messages are 'persistent' objects.

This paper is structured as follows: Section 2 gives a description of the framework
as it is realised in the AME prototype. Section 3 gives an example of an activity that
has been modelled in the AME prototype. Section 4 outlines the implementation
of the AME prototype. Section 5 concludes the paper by summarising important
modelling and implementation issues, and identifying areas for future research.

2. The conceptual framework

The conceptual framework encompasses both the structural elements of an
organisation, and activities that these elements may be involved in. The MacAll I
framework provided the basis for the structural aspects of the model, and the
procedural aspects (i.e. specification of activ~ties) are loosely based on work
undertaken by the AMIGO Advanced. group [Pan89].

Eight components of the framework can be identified.:

• Activities - specified sets of tasks that are performed by groupings of role
instances in order to achieve a common goal.

• Peopie - piacehoiders that represent the actuai individuais working within
the organisation, and their capabilities.

• Roles - specifications of the responsibilities and duties assumed by any
person that plays the role.

• Workspaces - conceptual work areas containing resources associated with
particular roles.

IP Messages - persistent objects that flow between the role instances associated
with an activity.

• Information units (iunits) - 'atomic' units of information that are used in

• Rules - used to constrain the behaviour of other components.

• Functions - operations carried out by roles and messages as part of an
activity.

In the AME prototype, roles, people, workspaces, iunits and messages are all
represented as objects. Thus, particular role instances combine to take part in a
given activity. General and organisation-specific definitions of these component
classes are stored in the Organisational Manual - a database which acts as a
reference both for users of the AME, and for the AME itself.

The remainder of this sectfon describes the components and their
interrelationship as they are represented in the AME prototype.

161

2.1 Activities

These define the basic work processes of an organisation. The undertaking of a
specific organisational activity results in the perfonnance of a series of tasks by a
group of roles in order to bring about a particular state of the world. The formal
description of an activity details the start-state and end-state(s) as well as the roles
and messages that will be involved in its performance. The description lists the
duties of each role and potentially the sequence of actions that the role instance is
expected to undertake. However, an explicit role co-ordination 'script' is not
included in this component; co-ordination is left to the role instances.

This approach to the modelling of activities has been described as a role-oriented
approach. It contrasts with a mediator-oriented approach, where the activity is
represented by an event script which an autonomous agent uses to direct
communication - see [Pank89]. Our major conceI11 was to vest responsibility for
the performance of an activity with the role(s) involved in taking part in it. The
rationale was that many organisational co-ordination activities either do not yet
admit of a precise formal description or, for reasons of maintainability/flexibility,
choose not to support such a description. It therefore makes sense to associate the
responsibility for activity co-ordination with specific role instances rather than
abstract entities. Thus, users ultimately have to be responsible for making
decisions concerning the performance or non-performance of parts of an AME
activity.

2.2 People

Each person in the organisation being modelled has a person object entry in the
organisational manual. This specifies the organisational roles that they are
allowed to play (each person has a 'personal' role in addition to those allocated for
organisational activities).

An AME user interacts with the organisational model by playing a role. This is
achieved by creating an instance of the appropriate role class and binding that
instance to the person. One person may be associated with several different role
.::_10 ,.. &. "'_ ... r -1-':__
Hl.naH~C" QL aH] VHI;; LHHC.

2.3 Roles

A role defines a group of duties and responsibilities that may be taken on by one or
more people. Roles typically correspond to particular job titles within
organisations, e.g. programmer, manager, secretary. For a given organisation, the
set of role classes used is defined by the contents of the organisational manual.
Each class definition includes a set of generic role rules and also sets of activity­
specific rules.

A role is undertaken by a role instance, which consists of the person instance
playing the role, the set of role rules, and a role agent. The role agent interprets the
role rules under the direction of the person instance. The person instance playing
a role may set a division of responsibility (DOR) for each activity that a role
instance is participating in; this determines the extent of the role agent's use of the

162

role rules in the performance of the role. For example, a secretary role may allow
the role agent to authorise stationery requests normally, but when budgets are low
the person perfonning the role may wish to authorise requests on merit.

In the present prototype, the OOR is associated with an integer value. All rules
that are invoked by role instances have a number as~ociated with them; if this
number is less than the DOR of the current ruleset it is the role agent's
responsibility to perform the required action(s) - see section three.

2.4 Workspaces

A workspace is a (conceptual) work area that is associated. with one particular role
class, and is used by all instances of that class (i.e. all the people playing that role). It
contains three message handling resources: an in-tray, an in-progress tray, and an
out-tray; and other resources (e.g. tools and services) including filing cabinets for
the storage of iunits and completed messages. Typically, use of workspace
resources and stored information is restricted to instances of the associated role.
However, subject to specified constraints, the contents of the workspace may be
viewed by instances of other roles.

The in-tray is where a message arrives at the workspace. Once a message arrives,
the appropriate role instances are notified and asked to process the message. A
message may be directed at all instances of a role or to one particular instance (i.e.
person), in the latter case only that role instance is notified. V/hen a message is
being processed it is transferred to the in-progress tray, which effectively locks the
message and prevents other role instances from processing it.

2.5 Messages

A message exists for the purpose of collecting information associated with
activities and transferring it between roles. Unlike the world of electronic mail,
messages exist for the lifetime of an activity (during this time they may be passed
around and processed by many roles). Several standard types of messages are
defined in the organisational manual, (e.g. memos, notices, forms) and other types
may be added. A message consists of one or more component iunits and a set of

~ u ~

rules that are to be invoked when the message is complete, that is when a given
set of iunits have been processed.

2.6 Iunits

Iunits are 'atomic' information objects. An iunit has a name, one or more fields,
and a set of completion rules. Fields within an iunit are typed, and must be filled
with values of the given type. (The iunit is typically structured as a group of role
related fields.)

Message forms in the AME prototype are composed from groups of iunits,
although other objects (e.g. documents) can also be composed of iunits. In
principle, the iunits that are 'transferred' in a message body may be accessed
concurrently or shared by other messages. In practice, the nature of the activity in
which an iunit is used will determine whether shared access is allowed.

163

On completion of an iunit, its completion ruleset is invoked. The ruleset verifies
the contents, determines the next iunit for processing and directs the parent
message to the appropriate role. (The iunit may determine that the message is
complete (Le. no further iunits need to be filled in) in which case it informs the
message (see 2.6).

2.7 Rules

The rule components of the organisational model define and constrain the
behaviour of other components (specifically roles, messages, and iunits) under
particular conditions. A rule has a label, an antecedent part consisting of zero or
more conditions, and a consequent part consisting. of one or more actions.

Sets of rules (rulesets) are invoked at specified times during the lifetime of an
object instance (e.g. when a role instance is notified of the arrival of a message).
When a ruleset is invoked, the consequent part of each rule is evaluated. The
actions in the consequent part of the rule are performed if the antecedent part
evaluates to "true". (If there are zero conditions the default evaluation is 'true'.)

A ruleset consists of a list of rule names. The rules themselves are not pre-Ioaded
when the object ruleset is created but are retrieved from the organisational
manual just prior to evaluation ('late binding').

2.8 Functions

Functions are the operations performed within the group communication
processes (e.g. instantiate-message, fill-field, send-selector). They are
transactionally atomic (in the sense that they cannot be partially performed), and
they must be executed entirely by one processor (either a role instance or the role
agent>.

2.9 Relations between components of the organisational model

Figure 1 provides an illustration of the components and their inter-relationships.
The organisational model consists of the static description held in the
organisational manual and the (dynamic) set of on-gOing activities. One of the
activities in the figure is 'expanded' to show its components. Two types of role are
involved in this activity, one of the roles is being performed by two role instances.
A different person is associated with each of these three role instances.

A role instance contains groups of rules that govern its behaviour with respect to
different activities. The person associated with the instance may allow a role agent
to execute the rules, or may undertake them personally.

The workspace for each role is shared by all its instances and contains resources .
and stored information objects. One of the workspaces in the diagram contains
messages. Messages consist of a series of iunits and a completion ruleset. As shown
in the diagram, iunits consist of a set of fields and a completion ruleset.

It should be noted that components involved in the performance of this activity
may also be involved in other activities within the organisation.

164

THE ORGANISATION

fieJd~

organisational
manual

role agent
ruleset

..---...ctivity

orkspace

..........-'I...-message

Figure 1:An overview of the AME components

The next section gives an example of the use of the AME and provides more
details of its operation.

3. An Example

In order to provide an overview of how the above components interact within the
AME, a model of part of a typical company activity is described - travel
authorisation. The part of the activity that the example deals with is the processing
of a Travel Requisition Form. The form is used by a would-be traveller to describe
the purpose of the trip and it is circulated to various authoriser roles for 'signing­
off'. The actual number of roles involved varies depending upon the location and
cost of the trip. The AME sequence of events for part of this activity is shown in
figure 2.

The numbers in the figure are keys to the textual explanations below. The starting
point is that the traveller, John, has obtained informal permission for his trip.
However, there are a fair number of forms which he must fill in before he can

165

actually go on the trip. He therefore asks the departmental secretary to start the
processing of the relevant forms, including the Travel Requisition Form (TRF)
message.

BOM,role.:
: t•BOM

wor~ce.- ' ..
I "

: ""
: "I
I

u~c.rore

CC Manager
wor ce

TIre
Traveller

wor ace

1;'0
Secretary
wor e

Figure 2: Part of the travel authorisation procedure

1. The secretary, Sylvie, creates a new TRF message.

The TRF message is created using a template from the organisational manual,
thus ensuring that the form is as up-to-date as possible (e.g. it does not come from
a pile of forms Syivie has had since last December). As the message is created, it in
turn creates its constituent iunits and rulesets; once again from templates
contained within the organisational manual. When the message has been created,
it records information connected with its creation; which person created it (Sylvie),
which role they were playing (Secretary), and the time at which it was created. It
also marks the first iunit in the message as the current iunit (Le. the one that
should be processed next). The message then routes itself to the workspace
associated with the role that created it.

2. The workspace notifies the role instances of the arrival of the message

The Secretary workspace maintains a list of all the Secretary role instances
currently being performed. When a message arrives in its in-tray, the workspace
tries to determine which person should deal with it. Optionally, the message has
an attribute called Preferred Instance which in this case is set to the value Sylvie.
(This is a sensible default as Sylvie has just created the message.) The workspace

166

then informs the Secretary role instance that Sylvie is associated with that a
message is awaiting attention.

If, for some reason, Sylvie had stopped playing the Secretary role when the
message arrived, the workspace, upon detecting that the message's Preferred
Instance was not available to deal with the message, would then notify all other
instances of the role. For simplicity, the diagram does not show more' than one
role instance, though others may exist.

The rulesets within the Secretary role instance are executed in order to determine
if it can be processed. At this point the role instance moves the message from the
in-tray into the pending-tray to indicate that it is being dealt with.

3. The Secretary role determines if it can deal with the message.

By default, the person performing the role (Sylvie) would fill-in the background
travel details in the current TRF iunit. However, depending on the division of
responsibility set on role instance rulesets, some of the fields may be processed
automatically by the role agent. .

If the role agent requires the user to deal with (part of) the iunit, Sylvie is
requested to fill-in fields of the current iunit.

4. & 5. The person processes the required iunit

Sylvie fills-in the appropriate fields and then notifies the message that the iunit is
complete. The message places itself in the out-tray and informs the current iunit
that it is complete.

6. The iunit checks its fields and determines further actions.

The iunit fires its completion rulesets which generally check the validity of the
field values, if necessary put in any default values, then determine which will be
the new 'current' iunit and which role should process it (Traveller). The message
then routes itself to the relevant workspace.

A similar sequence of events now occurs with the traveller supplying details of the
trip, and the TRF message is then passed on to the first of the authoriser roles.

The whole process is then repeated for each of the other roles that need to be
queried for information before the TRF message can be considered complete. (The
number of roles involved will vary depending upon the travel details, or the state
of the budget, and will be determined by the appropriate rulesets.)

At some point an iunit completion ruleset will determine that the message is
complete and will tell the TRF message to fire its completion rulesets. This will
result in the Traveller receiving notification of trip acceptance/rejection and a
copy of the message being added to the secretary role archives.

A number of details have been omitted from this example in the interests of
brevity. However, it should give the reader an understanding of how
organisational activities are modelled. The next section discusses how the AME
prototype that modelled this activity was implemented.

167

4. AME Implementation Issues

Early in the project it was decided to base the architecture on object oriented
principles. The use of an object oriented approach allowed the implementation to
be both elegant and adaptable.,-

Initial prototyping work was carried out in the Poplog Flavours environment.
However, the project requirements dictated that the prototype did not run in an
embedded environment. Accordingly, the final prototype was implemented in
C++. An important factor in the choice of C++ was the availability of an object
class library called OOPS [Gorl88]. These classes are loosely modelled on those
provided within the Smalltalk-80 language.

The components that make up the model map almost directly into object classes.
An important part of the implementa tion is concerned with the design of the
constructors for these classes.

4.1 Constructors

The constructors for all AME classes have the same basic functions:

• Read and parse a description file.

• Create anv other necessarv obiects.
J 01 ,

• Assign the object a unique identifier.

• Register the object with any objects that need to know of its existence.

• Register the object with the global dictionary of all objects.

After the description file has been parsed it may be necessary for the constructor to
make instances of other classes within the model. For example, the message con­
structor must create the appropriate rulesets and iunits as described in the descrip­
tion file - see figure 3.

The diagram shows how complex initialisation of a given instance may be. A
message must create instances of rt.l!esets and iunits, and iunits in tt..lm vlill need
to create further instances of rulesets. (The corollary is that the deletion of
instances by destructors is quite complicated.) The rulesets (AME Class) that are
associated with the message are stored in a dictionary (OOPS Class).

Every object in the diagram that is actually attached to the message object, e.g. type,
comp_rulesets, is actually an instance variable and its constructor is called as part
of the message constructor. After reading its description file the message
constructor assigns values to the String instances and creates the required objects
(Rulesets and Iunits) and inserts them into the appropriate OOPS variable.

168

Message-f~=;=::==:==:-:=~:=~:::;=:1
I::~(tr;~~ shing(preunst~

String
(key)

Assoc--f-+-i-

Iunit--f-+-i-

Dictionary
(compJulesets)

Ruleset
(value)

OrderedClht
(iunits)

Figure 3. Object instarn:es within a message instance.

4.2 Identifiers

A major goal of the AME was to provide facilities to browse the current state of the
organisational model. This requires a simple mechanism for listing and displaying
all the currently active objects in the system. However, the name of an instance
cannot be guaranteed to be unique as, for example, it is possible to have more than
one instance of a TRF form active in the system at anyone time. Each instance
therefore needs to be assigned a unique identifier.

The command interface uses these identifiers to access the various objects. The
unique identifier is not absolutely necessary ror all classes as the name of some
objects can be guaranteed to be unique - e.g. there can 'only be one workspace with
a given name.

Registration with Interested Parties

When an instance is created, various other instances already in the system need to
be informed. For example, when a new role is created it needs to register with the
workspace associated with that role (so that the new role can be informed when
there are messages to be dealt with).

Therefore the constructor needs to know where to register each instance it creates.

Registration with the Global Dictionary

Each instance of an object that is created must also be registered with the global dic­
tionary. This enables two iJ.llportant actions to be carried out:

169

• It enables the user, via the Command Interface, to list and inspect all objects
within the model simply and easily.

• It enables the functions of various classes similar access to all the compo­
nents within the system. For example, when a role registers with a
workspace the role constructor must find the workspace instance \V~th t.he
name specified in the role description file. .

The Global Dictionary is actually a Dictionary of Dictionaries. The top level dictio­
nary consists of a series of strings which are the keys to other dictionaries. There is
a separate dictionary for each of the AME Classes. The majority of Class specific
Dictionaries are indexed on the identifier of the instance they contain.

4.3 Command Interface

The AME prototype does not contain a WYSIWYG visual interface. Rather, it was
envisaged that the prototype should provide a simple generic command interface
that could have direct manipulation interfaces layered on top of it. Therefore AME
provides a simple ASCII based command line interface that allows the user, or an
interface component, to communicate with the model. .

The interface commands can be divided into three categories:

• browsing - commands issued by the user to interrogate the state of the
model and components within the ti:lOdel.

• updating - commands that the user uses to update the state of the model.

• AME generated - the AME needs to inform the user of any necessary
changes in state e.g. an Iunit needs completing.

An example of the use of one of the browsing commands is given in the appendix
1.

Ead~ command needs to be preceded by a user signature, and the role he/she is
currently playing, to the model. This is necessary for two reasons:

• identification - e.g. to ensure that the person taking on a new role 'is
allowed to perform that roie.

• to allow multiple users to access the model.

A Signature takes the form [Person, Role]. For example:

lSylvie Harris, UIA Secretary] new role "Traveller"

may generate the response

RESPONSE: lSylvie Harris, UIA Secretary]

ROLE: "Traveller" 21 "Sylvie Harris"

ENDRESPONSE:

A sophisticated DI component may maintain separate windows for each role a
person is p~rforming and thus be able to update the appropriate window.
Alternatively, a 'mediator' component may route the message to one of many
other ill components representing different users.

170

5. Conclusion

This paper has described the develop~ent of a framework for modelling
organisational processes and a prototype execution environment - the AME.

There are several key featUres of the framework. First, the responSibility for the co­
ordination ano management of an activity is vested in the roles involved in its
performance. Second, roles are distinguished from people, thus allowing a
separation of responsibilities between a role and the person playing it. Third,
persistent messages provide the basic mechanism for collecting and transferring
activity information between roles. Finally, the concept of information sharing
(see [Henn89b]) has been addressed by (a) allowing role instances to share access to
objects in workspaces, and (b) constructing all complex information structUres
from iunits.

In summary, the development of the AME prototype represents a first attempt at
dealing with the difficult problem of modelling group communication processes
in organisations. There are still many high level issues that need to be addressed.
For example, the requirement for a meta-Ianguage for activity management (e.g.
see [Benf89D and an associated set of tools.

Furthermore, to conduct more realistic modelling of organisational activities, the
system needs to be re-implemented in a truly distributed environment. Tentative
plans have been made to do this using a commercial object oriented database
which offers many of the necessary facilities.

Acknowledgements

The authors gratefully acknowledge the contribution to this work made by two
groups from Digital, John Brooke and Jon Barrett of VIA-AID and Paul Jacobs and
Scott Bowie of lOSe. In addition, thanks are due to Alan Shepherd of the
r" :~-d~-- T' l_ r_~.._ ~ .. J\,.T~H:~~1. __ -w1.~ :~~le-~..... J.erl J.t..~ '" 1\.A"R
~UHl1l1U.lULctUUlI::> Kt:::>t'ctlLlI , ..:HUUp a. !'IlULLH'5IiciiH - liv iH'y.l iHei" u. U'C .l""i.1'r.i.

prototype rule interpreter.

References

[Benf89]

[Bowe88]

[Gorl88]

[Henn89]

S. Benford, Requirements of Activity Management, The 1st
European Conference on Computer Supported Cooperative Work,
1989

J. Bowers, J. Churcher, & T. Roberts, Structuring Computer-mediated
Communication in COSMOS. In R. Speth (editor), EUTECO '88 ­
Research into Networks and Distributed Applications, pages 195-210/
1988.

K. Gorlen, OOFS (Object Oriented Programming Support). Computer
Systems Laboratory/National Institutes of Health, Maryland USA.

P. Hennessy, S. Benford, & J. Bowers, Modelling Group
Communication Systems: Analysing four European projects,
Singapore International Conference on Networks, pages 56-61/ 1989.

171

[Henn89b]

[Pank89]

[Smit87]

[Smit89]

P. Hennessy, Information Domains in CSCW, The 1st European
Conference on Computer Supported Cooperative Work, 1989

U. Pankoke-Babatz, Computer Based Group Communication:· The
AM/GO Activity Model. Ellis Horwood, 1989.

H.T. Smith, G. Lunt, D. Young & J. Lawrence, The MacAll Project.
Communication Research Group, Nottingham University, 1987.

H.T. Smith, J.P. Onions, & S.D. Benford (editors), Distributed Group
Communication: The AMIGO Information Model. Ellis Horwood,
1989.

172

Appendix 1

The following details the syntax of one of the browsing commands - Display

Syntax display type Id

Means Display the Object of type with id. Shallow descriptions of objects
contained within the displayed object will be used - e.g., the
description of a Ruleset within an lunit will not be displayed. The id is
an integer (the creation id). However, for the types Workspace and
Person, it is permissible "to use the "name".

Example display message 11; display workspace "UIA Secretary"

TRF
1.0

19-0CT-88 11 :53:00 am
11

The traveller's request form

The first example may generate the output:

MESSAGE:
NAME:
VERSION:
DESCRIPTION:

ENDDESCRIPTION:
CREATION TIME:
ID:
ifPE:
STATE:
CURRENTROLE:
PREFEREDINSTANCE:
INSTANTIATOR:
INSTANTIATINGROLE:
IUNITS:

IUNIT:
IUNIT:
IUNIT:
U Ifd,T.
IVI,.I'.

ENDIUNITS:
RULESETS:

ENDRULESETS:
ENDMESSAGE:

INCOMPLETE
UIA Secretary
Sylvie Harris
Sylvie Harris
UIA Secretary

"Inst" 48 "ACTIVE"
"TRF Details" 50 "INACTIVE"
"CC Signoff" 52 "INACTIVE"
"Qt""\u ~i""nrlff" S::;A "If\.JA('TIV!="LJ"".Y, '-'I~'IVI' "'~, .. "-' ••• _

"message c-0mp!ete" 56

Note that the components within the example Message e.g. Iunits, Rulesets, are
not expanded; only a short version is provided. This cuts down on the amount of
information passed to the interface. If further information is required about a
component, another Display command is required. This aids the implementation
of a hypertext-like browsing tool.

173

